Update SuperCommute.lean

This commit is contained in:
jstoobysmith 2024-12-20 13:23:31 +00:00
parent d9226c778f
commit a3113a791c

View file

@ -13,17 +13,20 @@ import HepLean.PerturbationTheory.Wick.OfList
namespace Wick
noncomputable section
open FieldStatistic
variable {𝓕 : Type} (q : 𝓕 → FieldStatistic)
/-- Given a grading `q : I → Fin 2` and a list `l : List I` the super-commutor on the free algebra
`FreeAlgebra I` corresponding to commuting with `l`
as a linear map from `MonoidAlgebra (FreeMonoid I)` (the module of lists in `I`)
to itself. -/
def superCommuteMonoidAlgebra {I : Type} (q : I → Fin 2) (l : List I) :
MonoidAlgebra (FreeMonoid I) →ₗ[] MonoidAlgebra (FreeMonoid I) :=
Finsupp.lift (MonoidAlgebra (FreeMonoid I)) (List I)
def superCommuteMonoidAlgebra (l : List 𝓕) :
MonoidAlgebra (FreeMonoid 𝓕) →ₗ[] MonoidAlgebra (FreeMonoid 𝓕) :=
Finsupp.lift (MonoidAlgebra (FreeMonoid 𝓕)) (List 𝓕)
(fun r =>
Finsupp.lsingle (R := ) (l ++ r) 1 +
if grade q l = 1 ∧ grade q r = 1 then
if FieldStatistic.ofList q l = fermionic ∧ FieldStatistic.ofList q r = fermionic then
Finsupp.lsingle (R := ) (r ++ l) 1
else
- Finsupp.lsingle (R := ) (r ++ l) 1)
@ -31,17 +34,17 @@ def superCommuteMonoidAlgebra {I : Type} (q : I → Fin 2) (l : List I) :
/-- Given a grading `q : I → Fin 2` the super-commutor on the free algebra `FreeAlgebra I`
as a linear map from `MonoidAlgebra (FreeMonoid I)` (the module of lists in `I`)
to `FreeAlgebra I →ₗ[] FreeAlgebra I`. -/
def superCommuteAlgebra {I : Type} (q : I → Fin 2) :
MonoidAlgebra (FreeMonoid I) →ₗ[] FreeAlgebra I →ₗ[] FreeAlgebra I :=
Finsupp.lift (FreeAlgebra I →ₗ[] FreeAlgebra I) (List I) fun l =>
def superCommuteAlgebra :
MonoidAlgebra (FreeMonoid 𝓕) →ₗ[] FreeAlgebra 𝓕 →ₗ[] FreeAlgebra 𝓕 :=
Finsupp.lift (FreeAlgebra 𝓕 →ₗ[] FreeAlgebra 𝓕) (List 𝓕) fun l =>
(FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm.toAlgHom.toLinearMap
∘ₗ superCommuteMonoidAlgebra q l
∘ₗ FreeAlgebra.equivMonoidAlgebraFreeMonoid.toAlgHom.toLinearMap)
/-- Given a grading `q : I → Fin 2` the super-commutor on the free algebra `FreeAlgebra I`
as a bi-linear map. -/
def superCommute {I : Type} (q : I → Fin 2) :
FreeAlgebra I →ₗ[] FreeAlgebra I →ₗ[] FreeAlgebra I :=
def superCommute :
FreeAlgebra 𝓕 →ₗ[] FreeAlgebra 𝓕 →ₗ[] FreeAlgebra 𝓕 :=
superCommuteAlgebra q
∘ₗ FreeAlgebra.equivMonoidAlgebraFreeMonoid.toAlgHom.toLinearMap
@ -51,10 +54,10 @@ lemma equivMonoidAlgebraFreeMonoid_freeAlgebra {I : Type} (i : I) :
simp [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.single]
@[simp]
lemma superCommute_ι {I : Type} (q : I → Fin 2) (i j : I) :
lemma superCommute_ι (i j : 𝓕) :
superCommute q (FreeAlgebra.ι i) (FreeAlgebra.ι j) =
FreeAlgebra.ι i * FreeAlgebra.ι j +
if q i = 1 ∧ q j = 1 then
if q i = fermionic ∧ q j = fermionic then
FreeAlgebra.ι j * FreeAlgebra.ι i
else
- FreeAlgebra.ι j * FreeAlgebra.ι i := by
@ -62,7 +65,7 @@ lemma superCommute_ι {I : Type} (q : I → Fin 2) (i j : I) :
AlgEquiv.toAlgHom_toLinearMap, LinearMap.coe_comp, Function.comp_apply,
AlgEquiv.toLinearMap_apply, equivMonoidAlgebraFreeMonoid_freeAlgebra, Fin.isValue, neg_mul]
erw [Finsupp.lift_apply]
simp only [superCommuteMonoidAlgebra, Finsupp.lsingle_apply, Fin.isValue, grade_freeMonoid,
simp only [superCommuteMonoidAlgebra, Finsupp.lsingle_apply, Fin.isValue, ofList_freeMonoid,
zero_smul, Finsupp.sum_single_index, one_smul, LinearMap.coe_comp, Function.comp_apply,
AlgEquiv.toLinearMap_apply, equivMonoidAlgebraFreeMonoid_freeAlgebra]
conv_lhs =>
@ -70,10 +73,10 @@ lemma superCommute_ι {I : Type} (q : I → Fin 2) (i j : I) :
erw [Finsupp.lift_apply]
simp only [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply, Fin.isValue,
smul_add, MonoidAlgebra.smul_single', mul_one, smul_ite, smul_neg, Finsupp.sum_add,
Finsupp.single_zero, Finsupp.sum_single_index, grade_freeMonoid, neg_zero, ite_self,
Finsupp.single_zero, Finsupp.sum_single_index, ofList_freeMonoid, neg_zero, ite_self,
AlgEquiv.ofAlgHom_symm_apply, map_add, MonoidAlgebra.lift_single, one_smul]
congr
by_cases hq : q i = 1 ∧ q j = 1
by_cases hq : q i = fermionic ∧ q j = fermionic
· rw [if_pos hq, if_pos hq]
simp only [MonoidAlgebra.lift_single, one_smul]
obtain ⟨left, right⟩ := hq
@ -82,9 +85,10 @@ lemma superCommute_ι {I : Type} (q : I → Fin 2) (i j : I) :
simp only [map_neg, MonoidAlgebra.lift_single, one_smul, neg_inj]
rfl
lemma superCommute_ofList_ofList {I : Type} (q : I → Fin 2) (l r : List I) (x y : ) :
lemma superCommute_ofList_ofList (l r : List 𝓕) (x y : ) :
superCommute q (ofList l x) (ofList r y) =
ofList (l ++ r) (x * y) + (if grade q l = 1 ∧ grade q r = 1 then
ofList (l ++ r) (x * y) + (if FieldStatistic.ofList q l = fermionic ∧
FieldStatistic.ofList q r = fermionic then
ofList (r ++ l) (y * x) else - ofList (r ++ l) (y * x)) := by
simp only [superCommute, superCommuteAlgebra, AlgEquiv.toAlgHom_eq_coe,
AlgEquiv.toAlgHom_toLinearMap, ofList, LinearMap.coe_comp, Function.comp_apply,
@ -99,8 +103,8 @@ lemma superCommute_ofList_ofList {I : Type} (q : I → Fin 2) (l r : List I) (x
erw [Finsupp.lift_apply]
simp only [Fin.isValue, smul_add, MonoidAlgebra.smul_single', mul_one, smul_ite, smul_neg,
Finsupp.sum_add, Finsupp.single_zero, Finsupp.sum_single_index, neg_zero, ite_self, map_add]
by_cases hg : grade q l = 1 ∧ grade q r = 1
· simp only [hg, Fin.isValue, and_self, ↓reduceIte]
by_cases hg : FieldStatistic.ofList q l = fermionic ∧ FieldStatistic.ofList q r = fermionic
· simp only [hg, and_self, ↓reduceIte]
congr
· rw [← map_smul]
congr
@ -120,19 +124,19 @@ lemma superCommute_ofList_ofList {I : Type} (q : I → Fin 2) (l r : List I) (x
exact MonoidAlgebra.smul_single' x (r ++ l) y
@[simp]
lemma superCommute_zero {I : Type} (q : I → Fin 2) (a : FreeAlgebra I) :
lemma superCommute_zero (a : FreeAlgebra 𝓕) :
superCommute q a 0 = 0 := by
simp [superCommute]
@[simp]
lemma superCommute_one {I : Type} (q : I → Fin 2) (a : FreeAlgebra I) :
lemma superCommute_one (a : FreeAlgebra 𝓕) :
superCommute q a 1 = 0 := by
let f : FreeAlgebra I →ₗ[] FreeAlgebra I := (LinearMap.flip (superCommute q)) 1
let f : FreeAlgebra 𝓕 →ₗ[] FreeAlgebra 𝓕 := (LinearMap.flip (superCommute q)) 1
have h1 : FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single [] 1) =
(1 : FreeAlgebra I) := by
(1 : FreeAlgebra 𝓕) := by
simp_all only [EmbeddingLike.map_eq_one_iff]
rfl
have f_single (l : FreeMonoid I) (x : ) :
have f_single (l : FreeMonoid 𝓕) (x : ) :
f ((FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single l x)))
= 0 := by
simp only [superCommute, superCommuteAlgebra, AlgEquiv.toAlgHom_eq_coe,
@ -149,7 +153,7 @@ lemma superCommute_one {I : Type} (q : I → Fin 2) (a : FreeAlgebra I) :
erw [Finsupp.lift_apply]
simp
have hf : f = 0 := by
let e : FreeAlgebra I ≃ₗ[] MonoidAlgebra (FreeMonoid I) :=
let e : FreeAlgebra 𝓕 ≃ₗ[] MonoidAlgebra (FreeMonoid 𝓕) :=
FreeAlgebra.equivMonoidAlgebraFreeMonoid.toLinearEquiv
apply (LinearEquiv.eq_comp_toLinearMap_iff (e₁₂ := e.symm) _ _).mp
apply MonoidAlgebra.lhom_ext'
@ -163,39 +167,39 @@ lemma superCommute_one {I : Type} (q : I → Fin 2) (a : FreeAlgebra I) :
rw [hf]
simp
lemma superCommute_ofList_mul {I : Type} (q : I → Fin 2) (la lb lc : List I) (xa xb xc : ) :
lemma superCommute_ofList_mul (la lb lc : List 𝓕) (xa xb xc : ) :
superCommute q (ofList la xa) (ofList lb xb * ofList lc xc) =
(superCommute q (ofList la xa) (ofList lb xb) * ofList lc xc +
superCommuteCoef q la lb • ofList lb xb * superCommute q (ofList la xa) (ofList lc xc)) := by
simp only [Algebra.smul_mul_assoc]
conv_lhs => rw [← ofList_pair]
simp only [superCommute_ofList_ofList, Fin.isValue, grade_append, ite_eq_right_iff, zero_ne_one,
simp only [superCommute_ofList_ofList, Fin.isValue, ofList_append, ite_eq_right_iff, zero_ne_one,
imp_false]
simp only [superCommute_ofList_ofList, Fin.isValue, grade_append, ite_eq_right_iff, zero_ne_one,
simp only [superCommute_ofList_ofList, Fin.isValue, ofList_append, ite_eq_right_iff, zero_ne_one,
imp_false, ofList_triple_assoc, ofList_triple, ofList_pair, superCommuteCoef]
by_cases hla : grade q la = 1
by_cases hla : FieldStatistic.ofList q la = fermionic
· simp only [hla, Fin.isValue, true_and, ite_not, ite_smul, neg_smul, one_smul]
by_cases hlb : grade q lb = 1
by_cases hlb : FieldStatistic.ofList q lb = fermionic
· simp only [hlb, Fin.isValue, ↓reduceIte]
by_cases hlc : grade q lc = 1
· simp only [Fin.isValue, hlc, ↓reduceIte]
by_cases hlc : FieldStatistic.ofList q lc = fermionic
· simp only [hlc, reduceCtorEq, imp_false, not_true_eq_false, ↓reduceIte]
simp only [mul_assoc, add_mul, mul_add]
abel
· have hc : grade q lc = 0 := by
omega
simp only [Fin.isValue, hc, one_ne_zero, ↓reduceIte, zero_ne_one]
· have hc : FieldStatistic.ofList q lc = bosonic := by
exact (neq_fermionic_iff_eq_bosonic (FieldStatistic.ofList q lc)).mp hlc
simp only [hc, fermionic_not_eq_bonsic, reduceCtorEq, imp_self, ↓reduceIte]
simp only [mul_assoc, add_mul, mul_add, mul_neg, neg_add_rev, neg_neg]
abel
· have hb : grade q lb = 0 := by
omega
· have hb : FieldStatistic.ofList q lb = bosonic := by
exact (neq_fermionic_iff_eq_bosonic (FieldStatistic.ofList q lb)).mp hlb
simp only [hb, Fin.isValue, zero_ne_one, ↓reduceIte]
by_cases hlc : grade q lc = 1
· simp only [Fin.isValue, hlc, zero_ne_one, ↓reduceIte]
by_cases hlc : FieldStatistic.ofList q lc = fermionic
· simp only [hlc, reduceCtorEq, imp_self, ↓reduceIte]
simp only [mul_assoc, add_mul, neg_mul, mul_add]
abel
· have hc : grade q lc = 0 := by
omega
simp only [Fin.isValue, hc, ↓reduceIte, zero_ne_one]
· have hc : FieldStatistic.ofList q lc = bosonic := by
exact (neq_fermionic_iff_eq_bosonic (FieldStatistic.ofList q lc)).mp hlc
simp only [hc, reduceCtorEq, imp_false, not_true_eq_false, ↓reduceIte]
simp only [mul_assoc, add_mul, neg_mul, mul_add, mul_neg]
abel
· simp only [Fin.isValue, hla, false_and, ↓reduceIte, mul_assoc, add_mul, neg_mul, mul_add,
@ -207,14 +211,14 @@ lemma superCommute_ofList_mul {I : Type} (q : I → Fin 2) (la lb lc : List I) (
E.g. in the commutator
`[a, bc] = [a, b] c + b [a, c] ` the `superCommuteSplit` for `n=0` is `[a, b] c`
and for `n=1` is `b [a, c]`. -/
def superCommuteSplit {I : Type} (q : I → Fin 2) (la lb : List I) (xa xb : ) (n : )
(hn : n < lb.length) : FreeAlgebra I :=
def superCommuteSplit (la lb : List 𝓕) (xa xb : ) (n : )
(hn : n < lb.length) : FreeAlgebra 𝓕 :=
superCommuteCoef q la (List.take n lb) •
ofList (List.take n lb) 1 *
superCommute q (ofList la xa) (FreeAlgebra.ι (lb.get ⟨n, hn⟩))
* ofList (List.drop (n + 1) lb) xb
lemma superCommute_ofList_cons {I : Type} (q : I → Fin 2) (la lb : List I) (xa xb : ) (b1 : I) :
lemma superCommute_ofList_cons (la lb : List 𝓕) (xa xb : ) (b1 : 𝓕) :
superCommute q (ofList la xa) (ofList (b1 :: lb) xb) =
superCommute q (ofList la xa) (FreeAlgebra.ι b1) * ofList lb xb +
superCommuteCoef q la [b1] •
@ -224,13 +228,13 @@ lemma superCommute_ofList_cons {I : Type} (q : I → Fin 2) (la lb : List I) (xa
congr
· exact ofList_singleton b1
lemma superCommute_ofList_sum {I : Type} (q : I → Fin 2) (la lb : List I) (xa xb : ) :
lemma superCommute_ofList_sum (la lb : List 𝓕) (xa xb : ) :
superCommute q (ofList la xa) (ofList lb xb) =
∑ (n : Fin lb.length), superCommuteSplit q la lb xa xb n n.prop := by
induction lb with
| nil =>
simp only [superCommute_ofList_ofList, List.append_nil, Fin.isValue, grade_empty, zero_ne_one,
and_false, ↓reduceIte, List.nil_append, List.length_nil, Finset.univ_eq_empty,
simp only [superCommute_ofList_ofList, List.append_nil, FieldStatistic.ofList_empty,
reduceCtorEq, and_false, ↓reduceIte, List.nil_append, List.length_nil, Finset.univ_eq_empty,
Finset.sum_empty]
ring_nf
abel
@ -240,7 +244,7 @@ lemma superCommute_ofList_sum {I : Type} (q : I → Fin 2) (la lb : List I) (xa
superCommuteSplit q la (b :: lb) xa xb 0 (Nat.zero_lt_succ lb.length) := by
simp [superCommuteSplit, superCommuteCoef_empty, ofList_empty]
rw [h0]
have hf (f : Fin (b :: lb).length → FreeAlgebra I) : ∑ n, f n = f ⟨0,
have hf (f : Fin (b :: lb).length → FreeAlgebra 𝓕) : ∑ n, f n = f ⟨0,
Nat.zero_lt_succ lb.length⟩ + ∑ n, f (Fin.succ n) := by
exact Fin.sum_univ_succAbove f ⟨0, Nat.zero_lt_succ lb.length⟩
rw [hf]
@ -257,36 +261,30 @@ lemma superCommute_ofList_sum {I : Type} (q : I → Fin 2) (la lb : List I) (xa
· simp only [← mul_assoc, mul_eq_mul_right_iff]
exact Or.inl (Or.inl (ofList_cons_eq_ofList (List.take (↑n) lb) b 1).symm)
lemma superCommute_ofList_ofList_superCommuteCoef {I : Type} (q : I → Fin 2) (la lb : List I)
lemma superCommute_ofList_ofList_superCommuteCoef (la lb : List 𝓕)
(xa xb : ) : superCommute q (ofList la xa) (ofList lb xb) =
ofList la xa * ofList lb xb - superCommuteCoef q la lb • ofList lb xb * ofList la xa := by
rw [superCommute_ofList_ofList, superCommuteCoef]
by_cases hq : grade q la = 1 ∧ grade q lb = 1
by_cases hq : FieldStatistic.ofList q la = fermionic ∧ FieldStatistic.ofList q lb = fermionic
· simp [hq, ofList_pair]
· simp only [ofList_pair, Fin.isValue, hq, ↓reduceIte, one_smul]
abel
lemma ofList_ofList_superCommute {I : Type} (q : I → Fin 2) (la lb : List I) (xa xb : ) :
lemma ofList_ofList_superCommute (la lb : List 𝓕) (xa xb : ) :
ofList la xa * ofList lb xb = superCommuteCoef q la lb • ofList lb xb * ofList la xa
+ superCommute q (ofList la xa) (ofList lb xb) := by
rw [superCommute_ofList_ofList_superCommuteCoef]
abel
lemma ofListLift_ofList_superCommute' {I : Type}
(q : I → Fin 2) (l : List I) (r : List I) (x y : ) :
ofList r y * ofList l x = superCommuteCoef q l r • (ofList l x * ofList r y)
- superCommuteCoef q l r • superCommute q (ofList l x) (ofList r y) := by
nth_rewrite 2 [ofList_ofList_superCommute q]
rw [superCommuteCoef]
by_cases hq : grade q l = 1 ∧ grade q r = 1
· simp [hq, superCommuteCoef]
· simp [hq]
section lift
lemma superCommute_ofList_ofListLift {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ) :
variable {𝓕 : Type} {f : 𝓕 → Type} [∀ i, Fintype (f i)] (q : 𝓕 → FieldStatistic)
lemma superCommute_ofList_ofListLift (l : List (Σ i, f i)) (r : List 𝓕) (x y : ) :
superCommute (fun i => q i.1) (ofList l x) (ofListLift f r y) =
ofList l x * ofListLift f r y +
(if grade (fun i => q i.1) l = 1 ∧ grade q r = 1 then
(if FieldStatistic.ofList (fun i => q i.1) l = fermionic ∧
FieldStatistic.ofList q r = fermionic then
ofListLift f r y * ofList l x else - ofListLift f r y * ofList l x) := by
conv_lhs => rw [ofListLift_expand]
rw [map_sum]
@ -314,56 +312,55 @@ lemma superCommute_ofList_ofListLift {I : Type} {f : I → Type} [∀ i, Fintype
· rw [ofList_pair]
simp only [neg_mul]
lemma superCommute_ofList_ofListLift_superCommuteLiftCoef {I : Type} {f : I → Type}
[∀ i, Fintype (f i)]
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ) :
lemma superCommute_ofList_ofListLift_superCommuteLiftCoef
(l : List (Σ i, f i)) (r : List 𝓕) (x y : ) :
superCommute (fun i => q i.1) (ofList l x) (ofListLift f r y) =
ofList l x * ofListLift f r y - superCommuteLiftCoef q l r • ofListLift f r y * ofList l x := by
rw [superCommute_ofList_ofListLift, superCommuteLiftCoef]
by_cases hq : grade (fun i => q i.fst) l = 1 ∧ grade q r = 1
by_cases hq : FieldStatistic.ofList (fun i => q i.fst) l = fermionic ∧
FieldStatistic.ofList q r = fermionic
· simp [hq]
· simp only [Fin.isValue, hq, ↓reduceIte, neg_mul, one_smul]
abel
lemma ofList_ofListLift_superCommute {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ) :
lemma ofList_ofListLift_superCommute (l : List (Σ i, f i)) (r : List 𝓕) (x y : ) :
ofList l x * ofListLift f r y = superCommuteLiftCoef q l r • ofListLift f r y * ofList l x
+ superCommute (fun i => q i.1) (ofList l x) (ofListLift f r y) := by
rw [superCommute_ofList_ofListLift_superCommuteLiftCoef]
abel
lemma ofListLift_ofList_superCommute {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ) :
lemma ofListLift_ofList_superCommute (l : List (Σ i, f i)) (r : List 𝓕) (x y : ) :
ofListLift f r y * ofList l x = superCommuteLiftCoef q l r • (ofList l x * ofListLift f r y)
- superCommuteLiftCoef q l r •
superCommute (fun i => q i.1) (ofList l x) (ofListLift f r y) := by
rw [ofList_ofListLift_superCommute, superCommuteLiftCoef]
by_cases hq : grade (fun i => q i.fst) l = 1 ∧ grade q r = 1
by_cases hq : FieldStatistic.ofList (fun i => q i.fst) l = fermionic ∧
FieldStatistic.ofList q r = fermionic
· simp [hq]
· simp [hq]
lemma superCommuteLiftCoef_append {I : Type} {f : I → Type}
(q : I → Fin 2) (l : List (Σ i, f i)) (r1 r2 : List I) :
omit [(i : 𝓕) → Fintype (f i)] in
lemma superCommuteLiftCoef_append (l : List (Σ i, f i)) (r1 r2 : List 𝓕) :
superCommuteLiftCoef q l (r1 ++ r2) =
superCommuteLiftCoef q l r1 * superCommuteLiftCoef q l r2 := by
simp only [superCommuteLiftCoef, Fin.isValue, grade_append, ite_eq_right_iff, zero_ne_one,
simp only [superCommuteLiftCoef, Fin.isValue, ofList_append, ite_eq_right_iff, zero_ne_one,
imp_false, mul_ite, mul_neg, mul_one]
by_cases hla : grade (fun i => q i.1) l = 1
· by_cases hlb : grade q r1 = 1
· by_cases hlc : grade q r2 = 1
by_cases hla : FieldStatistic.ofList (fun i => q i.1) l = fermionic
· by_cases hlb : FieldStatistic.ofList q r1 = fermionic
· by_cases hlc : FieldStatistic.ofList q r2 = fermionic
· simp [hlc, hlb, hla]
· have hc : grade q r2 = 0 := by
omega
· have hc : FieldStatistic.ofList q r2 = bosonic := by
exact (neq_fermionic_iff_eq_bosonic (FieldStatistic.ofList q r2)).mp hlc
simp [hc, hlb, hla]
· have hb : grade q r1 = 0 := by
omega
by_cases hlc : grade q r2 = 1
· have hb : FieldStatistic.ofList q r1 = bosonic := by
exact (neq_fermionic_iff_eq_bosonic (FieldStatistic.ofList q r1)).mp hlb
by_cases hlc : FieldStatistic.ofList q r2 = fermionic
· simp [hlc, hb]
· have hc : grade q r2 = 0 := by
omega
· have hc : FieldStatistic.ofList q r2 = bosonic := by
exact (neq_fermionic_iff_eq_bosonic (FieldStatistic.ofList q r2)).mp hlc
simp [hc, hb]
· have ha : grade (fun i => q i.1) l = 0 := by
omega
· have ha : FieldStatistic.ofList (fun i => q i.1) l = bosonic := by
exact (neq_fermionic_iff_eq_bosonic (FieldStatistic.ofList (fun i => q i.fst) l)).mp hla
simp [ha]
/-- Given two lists `l : List (Σ i, f i)` and `r : List I`, on
@ -372,16 +369,14 @@ lemma superCommuteLiftCoef_append {I : Type} {f : I → Type}
E.g. in the commutator
`[a, bc] = [a, b] c + b [a, c] ` the `superCommuteSplit` for `n=0` is `[a, b] c`
and for `n=1` is `b [a, c]`. -/
def superCommuteLiftSplit {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ) (n : )
def superCommuteLiftSplit (l : List (Σ i, f i)) (r : List 𝓕) (x y : ) (n : )
(hn : n < r.length) : FreeAlgebra (Σ i, f i) :=
superCommuteLiftCoef q l (List.take n r) •
(ofListLift f (List.take n r) 1 *
superCommute (fun i => q i.1) (ofList l x) (sumFiber f (FreeAlgebra.ι (r.get ⟨n, hn⟩)))
* ofListLift f (List.drop (n + 1) r) y)
lemma superCommute_ofList_ofListLift_cons {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ) (b1 : I) :
lemma superCommute_ofList_ofListLift_cons (l : List (Σ i, f i)) (r : List 𝓕) (x y : ) (b1 : 𝓕) :
superCommute (fun i => q i.1) (ofList l x) (ofListLift f (b1 :: r) y) =
superCommute (fun i => q i.1) (ofList l x) (sumFiber f (FreeAlgebra.ι b1))
* ofListLift f r y + superCommuteLiftCoef q l [b1] •
@ -430,13 +425,12 @@ lemma superCommute_ofList_ofListLift_cons {I : Type} {f : I → Type} [∀ i, Fi
rw [ofList_singleton]
simp
lemma superCommute_ofList_ofListLift_sum {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
(q : I → Fin 2) (l : List (Σ i, f i)) (r : List I) (x y : ) :
lemma superCommute_ofList_ofListLift_sum (l : List (Σ i, f i)) (r : List 𝓕) (x y : ) :
superCommute (fun i => q i.1) (ofList l x) (ofListLift f r y) =
∑ (n : Fin r.length), superCommuteLiftSplit q l r x y n n.prop := by
induction r with
| nil =>
simp only [superCommute_ofList_ofListLift, Fin.isValue, grade_empty, zero_ne_one, and_false,
simp only [superCommute_ofList_ofListLift, Fin.isValue, ofList_empty, zero_ne_one, and_false,
↓reduceIte, neg_mul, List.length_nil, Finset.univ_eq_empty, Finset.sum_empty]
rw [ofListLift, ofList_empty']
simp
@ -447,7 +441,7 @@ lemma superCommute_ofList_ofListLift_sum {I : Type} {f : I → Type} [∀ i, Fin
superCommuteLiftSplit q l (b :: r) x y 0 (Nat.zero_lt_succ r.length) := by
simp [superCommuteLiftSplit, superCommuteLiftCoef_empty, ofListLift_empty]
rw [h0]
have hf (g : Fin (b :: r).length → FreeAlgebra ((i : I) × f i)) : ∑ n, g n = g ⟨0,
have hf (g : Fin (b :: r).length → FreeAlgebra ((i : 𝓕) × f i)) : ∑ n, g n = g ⟨0,
Nat.zero_lt_succ r.length⟩ + ∑ n, g (Fin.succ n) := by
exact Fin.sum_univ_succAbove g ⟨0, Nat.zero_lt_succ r.length⟩
rw [hf]
@ -470,5 +464,6 @@ lemma superCommute_ofList_ofListLift_sum {I : Type} {f : I → Type} [∀ i, Fin
congr
rw [← ofList_pair, one_mul]
rfl
end lift
end
end Wick