feat: Add monoidal functor for complex lorentz tensors

This commit is contained in:
jstoobysmith 2024-10-09 14:33:13 +00:00
parent a39e7e5e65
commit a39aeeed8b
4 changed files with 649 additions and 8 deletions

View file

@ -0,0 +1,354 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import Mathlib.LinearAlgebra.PiTensorProduct
/-!
# Pi Tensor Products
The purpose of this file is to define some results about Pi tensor products not currently
in Mathlib.
At some point these should either be up-streamed to Mathlib or replaced with definitions already
in Mathlib.
-/
namespace HepLean.PiTensorProduct
noncomputable section tmulEquiv
variable {R ι1 ι2 ι3 M N : Type} [CommSemiring R]
{s1 : ι1 → Type} [inst1 : (i : ι1) → AddCommMonoid (s1 i)] [inst1' : (i : ι1) → Module R (s1 i)]
{s2 : ι2 → Type} [inst2 : (i : ι2) → AddCommMonoid (s2 i)] [inst2' : (i : ι2) → Module R (s2 i)]
{s3 : ι3 → Type} [inst3 : (i : ι3) → AddCommMonoid (s3 i)] [inst3' : (i : ι3) → Module R (s3 i)]
[AddCommMonoid M] [Module R M]
[AddCommMonoid N] [Module R N]
open TensorProduct
/-!
## induction principals for pi tensor products
-/
lemma tensorProd_piTensorProd_ext
{f g : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) →ₗ[R] M}
(h : ∀ p q, f (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)
= g (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q)) : f = g := by
apply TensorProduct.ext'
refine fun x ↦
PiTensorProduct.induction_on' x ?_ (by
intro a b hx hy y
simp [map_add, add_tmul, hx, hy])
intro rx fx
refine fun y ↦
PiTensorProduct.induction_on' y ?_ (by
intro a b hx hy
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod] at hx hy
simp [map_add, tmul_add, hx, hy])
intro ry fy
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, LinearMapClass.map_smul]
apply congrArg
simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul]
exact congrArg (HSMul.hSMul rx) (h fx fy)
lemma induction_assoc
{f g : ((⨂[R] i : ι1, s1 i) ⊗[R] (⨂[R] i : ι2, s2 i) ⊗[R] ⨂[R] i : ι3, s3 i) →ₗ[R] M}
(h : ∀ p q m, f (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q ⊗ₜ[R] PiTensorProduct.tprod R m)
= g (PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q ⊗ₜ[R] PiTensorProduct.tprod R m)) : f = g := by
apply TensorProduct.ext'
refine fun x ↦
PiTensorProduct.induction_on' x ?_ (by
intro a b hx hy y
simp [map_add, add_tmul, hx, hy])
intro rx fx
intro y
simp
simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul]
apply congrArg
let f' : ((⨂[R] i : ι2, s2 i) ⊗[R] ⨂[R] i : ι3, s3 i) →ₗ[R] M := {
toFun := fun y => f (PiTensorProduct.tprod R fx ⊗ₜ[R] y),
map_add' := fun y1 y2 => by
simp [tmul_add]
map_smul' := fun r y => by
simp [tmul_smul]}
let g' : ((⨂[R] i : ι2, s2 i) ⊗[R] ⨂[R] i : ι3, s3 i) →ₗ[R] M := {
toFun := fun y => g (PiTensorProduct.tprod R fx ⊗ₜ[R] y),
map_add' := fun y1 y2 => by
simp [tmul_add]
map_smul' := fun r y => by
simp [tmul_smul]}
change f' y = g' y
apply congrFun
refine DFunLike.coe_fn_eq.mpr ?H.h.h.a
apply tensorProd_piTensorProd_ext
intro p q
exact h fx p q
lemma induction_assoc'
{f g : (((⨂[R] i : ι1, s1 i) ⊗[R] (⨂[R] i : ι2, s2 i)) ⊗[R] ⨂[R] i : ι3, s3 i) →ₗ[R] M}
(h : ∀ p q m, f ((PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q) ⊗ₜ[R] PiTensorProduct.tprod R m)
= g ((PiTensorProduct.tprod R p ⊗ₜ[R] PiTensorProduct.tprod R q) ⊗ₜ[R] PiTensorProduct.tprod R m)) : f = g := by
apply TensorProduct.ext'
intro x
refine fun y ↦
PiTensorProduct.induction_on' y ?_ (by
intro a b hy hx
simp [map_add, add_tmul, tmul_add, hy, hx])
intro ry fy
simp
apply congrArg
let f' : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) →ₗ[R] M := {
toFun := fun y => f (y ⊗ₜ[R] PiTensorProduct.tprod R fy),
map_add' := fun y1 y2 => by
simp [add_tmul]
map_smul' := fun r y => by
simp [smul_tmul]}
let g' : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) →ₗ[R] M := {
toFun := fun y => g (y ⊗ₜ[R] PiTensorProduct.tprod R fy),
map_add' := fun y1 y2 => by
simp [add_tmul]
map_smul' := fun r y => by
simp [smul_tmul]}
change f' x = g' x
apply congrFun
refine DFunLike.coe_fn_eq.mpr ?H.h.h.a
apply tensorProd_piTensorProd_ext
intro p q
exact h p q fy
lemma induction_tmul_mod
{f g : ((⨂[R] i : ι1, s1 i) ⊗[R] N) →ₗ[R] M}
(h : ∀ p m, f (PiTensorProduct.tprod R p ⊗ₜ[R] m) = g (PiTensorProduct.tprod R p ⊗ₜ[R] m)) : f = g := by
apply TensorProduct.ext'
refine fun y ↦
PiTensorProduct.induction_on' y ?_ (by
intro a b hy hx
simp [map_add, add_tmul, tmul_add, hy, hx])
intro ry fy
intro x
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, smul_tmul, tmul_smul, map_smul]
apply congrArg
exact h fy x
lemma induction_mod_tmul
{f g : (N ⊗[R] ⨂[R] i : ι1, s1 i) →ₗ[R] M}
(h : ∀ m p, f (m ⊗ₜ[R] PiTensorProduct.tprod R p) = g (m ⊗ₜ[R] PiTensorProduct.tprod R p)) : f = g := by
apply TensorProduct.ext'
intro x
refine fun y ↦
PiTensorProduct.induction_on' y ?_ (by
intro a b hy hx
simp [map_add, add_tmul, tmul_add, hy, hx])
intro ry fy
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, smul_tmul, tmul_smul, map_smul]
apply congrArg
exact h x fy
/-!
# Dependent type version of PiTensorProduct.tmulEquiv
-/
instance : (i : ι1 ⊕ ι2) → AddCommMonoid ((fun i => Sum.elim s1 s2 i) i) := fun i =>
match i with
| Sum.inl i => inst1 i
| Sum.inr i => inst2 i
instance : (i : ι1 ⊕ ι2) → Module R ((fun i => Sum.elim s1 s2 i) i) := fun i =>
match i with
| Sum.inl i => inst1' i
| Sum.inr i => inst2' i
private def pureInl (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) : (i : ι1) → s1 i :=
fun i => f (Sum.inl i)
private def pureInr (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) : (i : ι2) → s2 i :=
fun i => f (Sum.inr i)
section
variable [DecidableEq (ι1 ⊕ ι2)] [DecidableEq ι1] [DecidableEq ι2]
lemma pureInl_update_left (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) (x : ι1)
(v1 : s1 x) : pureInl (Function.update f (Sum.inl x) v1) =
Function.update (pureInl f) x v1 := by
funext y
simp only [pureInl, Function.update, Sum.inl.injEq, Sum.elim_inl]
split
· rename_i h
subst h
rfl
· rfl
lemma pureInr_update_left (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) (x : ι1)
(v2 : s1 x) :
pureInr (Function.update f (Sum.inl x) v2) = (pureInr f) := by
funext y
simp [pureInr, Function.update, Sum.inl.injEq, Sum.elim_inl]
lemma pureInr_update_right (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) (x : ι2)
(v2 : s2 x) : pureInr (Function.update f (Sum.inr x) v2) =
Function.update (pureInr f) x v2 := by
funext y
simp only [pureInr, Function.update, Sum.inr.injEq, Sum.elim_inr]
split
· rename_i h
subst h
rfl
· rfl
lemma pureInl_update_right (f : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i) (x : ι2)
(v1 : s2 x) :
pureInl (Function.update f (Sum.inr x) v1) = (pureInl f) := by
funext y
simp [pureInl, Function.update, Sum.inr.injEq, Sum.elim_inr]
end
def domCoprod : MultilinearMap R (Sum.elim s1 s2) ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) where
toFun f := (PiTensorProduct.tprod R (pureInl f)) ⊗ₜ
(PiTensorProduct.tprod R (pureInr f))
map_add' f xy v1 v2 := by
haveI : DecidableEq (ι1 ⊕ ι2) := inferInstance
haveI : DecidableEq ι1 :=
@Function.Injective.decidableEq ι1 (ι1 ⊕ ι2) Sum.inl _ Sum.inl_injective
haveI : DecidableEq ι2 :=
@Function.Injective.decidableEq ι2 (ι1 ⊕ ι2) Sum.inr _ Sum.inr_injective
match xy with
| Sum.inl xy =>
simp only [Sum.elim_inl, pureInl_update_left, MultilinearMap.map_add, pureInr_update_left, ←
add_tmul]
| Sum.inr xy =>
simp only [Sum.elim_inr, pureInr_update_right, MultilinearMap.map_add, pureInl_update_right, ←
tmul_add]
map_smul' f xy r p := by
haveI : DecidableEq (ι1 ⊕ ι2) := inferInstance
haveI : DecidableEq ι1 :=
@Function.Injective.decidableEq ι1 (ι1 ⊕ ι2) Sum.inl _ Sum.inl_injective
haveI : DecidableEq ι2 :=
@Function.Injective.decidableEq ι2 (ι1 ⊕ ι2) Sum.inr _ Sum.inr_injective
match xy with
| Sum.inl x =>
simp only [Sum.elim_inl, pureInl_update_left, MultilinearMap.map_smul, pureInr_update_left,
smul_tmul, tmul_smul]
| Sum.inr y =>
simp only [Sum.elim_inr, pureInl_update_right, pureInr_update_right, MultilinearMap.map_smul,
tmul_smul]
def tmulSymm : (⨂[R] i : ι1 ⊕ ι2, (Sum.elim s1 s2) i) →ₗ[R]
((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) := PiTensorProduct.lift domCoprod
def elimPureTensor (p : (i : ι1) → s1 i) (q : (i : ι2) → s2 i) : (i : ι1 ⊕ ι2) → Sum.elim s1 s2 i :=
fun x =>
match x with
| Sum.inl x => p x
| Sum.inr x => q x
section
variable [DecidableEq ι1] [DecidableEq ι2]
lemma elimPureTensor_update_right (p : (i : ι1) → s1 i) (q : (i : ι2) → s2 i)
(y : ι2) (r : s2 y) : elimPureTensor p (Function.update q y r) =
Function.update (elimPureTensor p q) (Sum.inr y) r := by
funext x
match x with
| Sum.inl x =>
simp only [Sum.elim_inl, ne_eq, reduceCtorEq, not_false_eq_true, Function.update_noteq]
rfl
| Sum.inr x =>
change Function.update q y r x = _
simp only [Function.update, Sum.inr.injEq, Sum.elim_inr]
split_ifs
· rename_i h
subst h
simp_all only
· rfl
@[simp]
lemma elimPureTensor_update_left (p : (i : ι1) → s1 i) (q : (i : ι2) → s2 i)
(x : ι1) (r : s1 x) : elimPureTensor (Function.update p x r) q =
Function.update (elimPureTensor p q) (Sum.inl x) r := by
funext y
match y with
| Sum.inl y =>
change (Function.update p x r) y = _
simp only [Function.update, Sum.inl.injEq, Sum.elim_inl]
split_ifs
· rename_i h
subst h
rfl
· rfl
| Sum.inr y =>
simp only [Sum.elim_inr, ne_eq, reduceCtorEq, not_false_eq_true, Function.update_noteq]
rfl
end
def elimPureTensorMulLin : MultilinearMap R s1
(MultilinearMap R s2 (⨂[R] i : ι1 ⊕ ι2, (Sum.elim s1 s2) i)) where
toFun p := {
toFun := fun q => PiTensorProduct.tprod R (elimPureTensor p q)
map_add' := fun m x v1 v2 => by
haveI : DecidableEq ι2 := inferInstance
haveI := Classical.decEq ι1
simp only [elimPureTensor_update_right, MultilinearMap.map_add]
map_smul' := fun m x r v => by
haveI : DecidableEq ι2 := inferInstance
haveI := Classical.decEq ι1
simp only [elimPureTensor_update_right, MultilinearMap.map_smul]}
map_add' p x v1 v2 := by
haveI : DecidableEq ι1 := inferInstance
haveI := Classical.decEq ι2
apply MultilinearMap.ext
intro y
simp
map_smul' p x r v := by
haveI : DecidableEq ι1 := inferInstance
haveI := Classical.decEq ι2
apply MultilinearMap.ext
intro y
simp
def tmul : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) →ₗ[R]
⨂[R] i : ι1 ⊕ ι2, (Sum.elim s1 s2) i := TensorProduct.lift {
toFun := fun a ↦
PiTensorProduct.lift <|
PiTensorProduct.lift (elimPureTensorMulLin) a,
map_add' := fun a b ↦ by simp
map_smul' := fun r a ↦ by simp}
def tmulEquiv : ((⨂[R] i : ι1, s1 i) ⊗[R] ⨂[R] i : ι2, s2 i) ≃ₗ[R]
⨂[R] i : ι1 ⊕ ι2, (Sum.elim s1 s2) i :=
LinearEquiv.ofLinear tmul tmulSymm
(by
apply PiTensorProduct.ext
apply MultilinearMap.ext
intro p
simp only [tmul, tmulSymm, domCoprod, LinearMap.compMultilinearMap_apply,
LinearMap.coe_comp, Function.comp_apply, PiTensorProduct.lift.tprod, MultilinearMap.coe_mk,
lift.tmul, LinearMap.coe_mk, AddHom.coe_mk]
simp only [elimPureTensorMulLin, MultilinearMap.coe_mk, LinearMap.id_coe, id_eq]
apply congrArg
funext x
match x with
| Sum.inl x => rfl
| Sum.inr x => rfl)
(by
apply tensorProd_piTensorProd_ext
intro p q
simp only [tmulSymm, domCoprod, tmul, elimPureTensorMulLin, LinearMap.coe_comp,
Function.comp_apply, lift.tmul, LinearMap.coe_mk, AddHom.coe_mk, PiTensorProduct.lift.tprod,
MultilinearMap.coe_mk, LinearMap.id_coe, id_eq]
rfl)
@[simp]
lemma tmulEquiv_tmul_tprod (p : (i : ι1) → s1 i) (q : (i : ι2) → s2 i) :
tmulEquiv ((PiTensorProduct.tprod R) p ⊗ₜ[R] (PiTensorProduct.tprod R) q) =
(PiTensorProduct.tprod R) (elimPureTensor p q) := by
simp only [tmulEquiv, tmul, elimPureTensorMulLin, LinearEquiv.ofLinear_apply, lift.tmul,
LinearMap.coe_mk, AddHom.coe_mk, PiTensorProduct.lift.tprod, MultilinearMap.coe_mk]
end tmulEquiv
end HepLean.PiTensorProduct