refactor: Lint

This commit is contained in:
jstoobysmith 2024-10-09 07:47:25 +00:00
parent 175d39a271
commit a39e7e5e65
2 changed files with 6 additions and 5 deletions

View file

@ -264,9 +264,7 @@ def map {C D : Type} (f : C → D) : MonoidalFunctor (OverColor C) (OverColor D)
| Sum.inl x => rfl
| Sum.inr x => rfl
def emptyEquiv (X1 X2 Y1 Y2 : Type): (X1 ⊕ X2) ⊕ (Y1 ⊕ Y2) ≃ (X1 ⊕ Y1) ⊕ (X2 ⊕ Y2) := by
exact Equiv.sumSumSumComm X1 X2 Y1 Y2
/-- The tensor product on `OverColor C` as a monoidal functor. -/
def tensor : MonoidalFunctor (OverColor C × OverColor C) (OverColor C) where
toFunctor := MonoidalCategory.tensor (OverColor C)
ε := Over.isoMk (Equiv.sumEmpty Empty Empty).symm.toIso (by
@ -332,6 +330,8 @@ def equivToIso {c : X → C} (e : X ≃ Y) : mk c ≅ mk (c ∘ e.symm) := {
simp only [Iso.symm_hom, Iso.inv_hom_id]
rfl}
/-- The equivalence between `Fin n.succ` and `Fin 1 ⊕ Fin n` extracting the
`i`th component. -/
def finExtractOne {n : } (i : Fin n.succ) : Fin n.succ ≃ Fin 1 ⊕ Fin n :=
(finCongr (by omega : n.succ = i + 1 + (n - i))).trans <|
finSumFinEquiv.symm.trans <|

View file

@ -33,8 +33,9 @@ structure TensorStruct where
F : MonoidalFunctor (OverColor C) (Rep k G)
/-- A map from `C` to `C`. An involution. -/
τ : C → C
/-- A monoidal natural isomorphism from OverColor.map τ ⋙ F to F. -/
dual : MonoidalNatIso (OverColor.map τ ⋙ F) F
/-- A monoidal natural isomorphism from OverColor.map τ ⊗⋙ F to F.
This will allow us to, for example, rise and lower indices. -/
dual : (OverColor.map τ ⊗⋙ F) ≅ F
/-- A specification of the dimension of each color in C. This will be used for explicit
evaluation of tensors. -/
evalNo : C →