feat: More informal def and lemma

This commit is contained in:
jstoobysmith 2024-09-17 05:23:09 -04:00
parent 371cd7002b
commit a62c66bc72

View file

@ -14,6 +14,9 @@ import HepLean.Meta.Informal
## The definition of Weyl fermion vector spaces.
We define the vector spaces corresponding to different types of Weyl fermions.
Note: We should prevent casting between these vector spaces.
-/
informal_definition leftHandedWeylFermion where
@ -76,10 +79,27 @@ informal_definition leftAltWeylFermionContraction where
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a left-handed Weyl fermion with a right-handed Weyl fermion.
In index notation this is ψ_a φ^a."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
deps :≈ [``leftHandedWeylFermion, ``altLeftHandedWeylFermion]
informal_lemma leftAltWeylFermionContraction_invariant where
math :≈ "The contraction leftAltWeylFermionContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
deps :≈ [`leftAltWeylFermionContraction]
deps :≈ [``leftAltWeylFermionContraction]
informal_definition altLeftWeylFermionContraction where
math :≈ "The linear map from altLeftHandedWeylFermion ⊗ leftHandedWeylFermion to given by
summing over components of altLeftHandedWeylFermion and leftHandedWeylFermion in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a left-handed Weyl fermion with a right-handed Weyl fermion.
In index notation this is φ^a ψ_a ."
deps :≈ [``leftHandedWeylFermion, ``altLeftHandedWeylFermion]
informal_lemma leftAltWeylFermionContraction_symm_altLeftWeylFermionContraction where
math :≈ "The linear map altLeftWeylFermionContraction is leftAltWeylFermionContraction composed
with the braiding of the tensor product."
deps :≈ [``leftAltWeylFermionContraction, ``altLeftWeylFermionContraction]
informal_lemma altLeftWeylFermionContraction_invariant where
math :≈ "The contraction altLeftWeylFermionContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
deps :≈ [``altLeftWeylFermionContraction]