feat: Make MulActionTensor

This commit is contained in:
jstoobysmith 2024-07-30 07:51:07 -04:00
parent 99f4e85839
commit a65fb06605
11 changed files with 177 additions and 55 deletions

View file

@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzVector.Basic
import HepLean.SpaceTime.LorentzVector.LorentzAction
import HepLean.SpaceTime.LorentzVector.Covariant
import HepLean.SpaceTime.LorentzTensor.Basic
/-!
@ -24,9 +24,9 @@ open TensorProduct
namespace LorentzVector
open Matrix
variable {d : } (v : LorentzVector d)
def contrUpDownBi : LorentzVector d →ₗ[] CovariantLorentzVector d →ₗ[] where
toFun v := {
toFun := fun w => ∑ i, v i * w i,
@ -60,6 +60,10 @@ def contrUpDownBi : LorentzVector d →ₗ[] CovariantLorentzVector d →ₗ[
def contrUpDown : LorentzVector d ⊗[] CovariantLorentzVector d →ₗ[] :=
TensorProduct.lift contrUpDownBi
lemma contrUpDown_tmul_eq_dotProduct {x : LorentzVector d} {y : CovariantLorentzVector d} :
contrUpDown (x ⊗ₜ[] y) = x ⬝ᵥ y := by
rfl
@[simp]
lemma contrUpDown_stdBasis_left (x : LorentzVector d) (i : Fin 1 ⊕ Fin d) :
contrUpDown (x ⊗ₜ[] (CovariantLorentzVector.stdBasis i)) = x i := by
@ -92,16 +96,26 @@ lemma contrUpDown_stdBasis_right (x : CovariantLorentzVector d) (i : Fin 1 ⊕ F
def contrDownUp : CovariantLorentzVector d ⊗[] LorentzVector d →ₗ[] :=
contrUpDown ∘ₗ (TensorProduct.comm _ _).toLinearMap
lemma contrDownUp_tmul_eq_dotProduct {x : CovariantLorentzVector d} {y : LorentzVector d} :
contrDownUp (x ⊗ₜ[] y) = x ⬝ᵥ y := by
rw [dotProduct_comm x y]
rfl
/-!
## The unit of the contraction
-/
def unitUp : LorentzVector d ⊗[] CovariantLorentzVector d :=
∑ i, LorentzVector.stdBasis i ⊗ₜ[] CovariantLorentzVector.stdBasis i
lemma unitUp_lid (x : LorentzVector d) :
TensorProduct.rid _
(TensorProduct.map (LinearEquiv.refl (_)).toLinearMap
(contrUpDown ∘ₗ (TensorProduct.comm _ _).toLinearMap )
((TensorProduct.assoc _ _ _) (unitUp ⊗ₜ[] x ))) = x := by
simp only [LinearEquiv.refl_toLinearMap, unitUp]
(TensorProduct.map (LinearEquiv.refl _).toLinearMap
(contrUpDown ∘ₗ (TensorProduct.comm _ _).toLinearMap)
((TensorProduct.assoc _ _ _) (unitUp ⊗ₜ[] x))) = x := by
simp only [LinearEquiv.refl_toLinearMap, unitUp]
rw [sum_tmul]
simp only [Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton, map_add, assoc_tmul, map_sum, map_tmul, LinearMap.id_coe, id_eq,
@ -113,8 +127,8 @@ def unitDown : CovariantLorentzVector d ⊗[] LorentzVector d :=
lemma unitDown_lid (x : CovariantLorentzVector d) :
TensorProduct.rid _
(TensorProduct.map (LinearEquiv.refl (_)).toLinearMap
(contrDownUp ∘ₗ (TensorProduct.comm _ _).toLinearMap )
(TensorProduct.map (LinearEquiv.refl _).toLinearMap
(contrDownUp ∘ₗ (TensorProduct.comm _ _).toLinearMap)
((TensorProduct.assoc _ _ _) (unitDown ⊗ₜ[] x))) = x := by
simp only [LinearEquiv.refl_toLinearMap, unitDown]
rw [sum_tmul]
@ -123,6 +137,29 @@ lemma unitDown_lid (x : CovariantLorentzVector d) :
id_eq, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, comm_tmul,
contrUpDown_stdBasis_right, rid_tmul, CovariantLorentzVector.decomp_stdBasis']
/-!
# Contractions and the Lorentz actions
-/
open Matrix
@[simp]
lemma contrUpDown_invariant_lorentzAction : @contrUpDown d ((LorentzVector.rep g) x ⊗ₜ[]
(CovariantLorentzVector.rep g) y) = contrUpDown (x ⊗ₜ[] y) := by
rw [contrUpDown_tmul_eq_dotProduct, contrUpDown_tmul_eq_dotProduct]
simp only [rep_apply, CovariantLorentzVector.rep_apply]
rw [Matrix.dotProduct_mulVec, vecMul_transpose, mulVec_mulVec]
simp only [LorentzGroup.subtype_inv_mul, one_mulVec]
@[simp]
lemma contrDownUp_invariant_lorentzAction : @contrDownUp d ((CovariantLorentzVector.rep g) x ⊗ₜ[]
(LorentzVector.rep g) y) = contrDownUp (x ⊗ₜ[] y) := by
rw [contrDownUp_tmul_eq_dotProduct, contrDownUp_tmul_eq_dotProduct]
rw [dotProduct_comm, dotProduct_comm x y]
simp only [rep_apply, CovariantLorentzVector.rep_apply]
rw [Matrix.dotProduct_mulVec, vecMul_transpose, mulVec_mulVec]
simp only [LorentzGroup.subtype_inv_mul, one_mulVec]
end LorentzVector
@ -132,7 +169,7 @@ open scoped minkowskiMatrix
variable {d : }
def asProdLorentzVector : LorentzVector d ⊗[] LorentzVector d :=
∑ μ, η μ μ • (LorentzVector.stdBasis μ ⊗ₜ[] LorentzVector.stdBasis μ)
∑ μ, η μ μ • (LorentzVector.stdBasis μ ⊗ₜ[] LorentzVector.stdBasis μ)
def asProdCovariantLorentzVector : CovariantLorentzVector d ⊗[] CovariantLorentzVector d :=
∑ μ, η μ μ • (CovariantLorentzVector.stdBasis μ ⊗ₜ[] CovariantLorentzVector.stdBasis μ)
@ -173,16 +210,15 @@ lemma asProdLorentzVector_contr_asCovariantProdLorentzVector :
refine Finset.sum_congr rfl (fun μ _ => ?_)
rw [← tmul_smul, TensorProduct.assoc_tmul]
simp only [map_tmul, LinearMap.id_coe, id_eq, contrLeft_asProdCovariantLorentzVector]
rw [tmul_sum, Finset.sum_eq_single_of_mem μ]
rw [tmul_smul]
change (η μ μ * (η μ μ * e μ μ)) • e μ ⊗ₜ[] CovariantLorentzVector.stdBasis μ = _
rw [tmul_sum, Finset.sum_eq_single_of_mem μ, tmul_smul]
change (η μ μ * (η μ μ * e μ μ)) • e μ ⊗ₜ[] CovariantLorentzVector.stdBasis μ = _
rw [LorentzVector.stdBasis]
erw [Pi.basisFun_apply]
simp
simp only [LinearMap.stdBasis_same, mul_one, η_apply_mul_η_apply_diag, one_smul]
exact Finset.mem_univ μ
intro ν _ hμν
rw [tmul_smul]
change ν ν * (η μ μ * e μ ν)) • (e μ ⊗ₜ[] CovariantLorentzVector.stdBasis ν) = _
change (η ν ν * (η μ μ * e μ ν)) • (e μ ⊗ₜ[] CovariantLorentzVector.stdBasis ν) = _
rw [LorentzVector.stdBasis]
erw [Pi.basisFun_apply]
simp only [LinearMap.stdBasis_apply', mul_ite, mul_one, mul_zero, ite_smul, zero_smul,
@ -197,15 +233,12 @@ lemma asProdCovariantLorentzVector_contr_asProdLorentzVector :
LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply]
rw [sum_tmul, map_sum, map_sum, unitDown]
refine Finset.sum_congr rfl (fun μ _ => ?_)
rw [smul_tmul,]
rw [TensorProduct.assoc_tmul]
rw [smul_tmul, TensorProduct.assoc_tmul]
simp only [tmul_smul, LinearMapClass.map_smul, map_tmul, LinearMap.id_coe, id_eq,
contrLeft_asProdLorentzVector]
rw [tmul_sum, Finset.sum_eq_single_of_mem μ]
rw [tmul_smul, smul_smul]
rw [LorentzVector.stdBasis]
rw [tmul_sum, Finset.sum_eq_single_of_mem μ, tmul_smul, smul_smul, LorentzVector.stdBasis]
erw [Pi.basisFun_apply]
simp
simp only [LinearMap.stdBasis_same, mul_one, η_apply_mul_η_apply_diag, one_smul]
exact Finset.mem_univ μ
intro ν _ hμν
rw [tmul_smul]
@ -217,5 +250,4 @@ lemma asProdCovariantLorentzVector_contr_asProdLorentzVector :
end minkowskiMatrix
end