Merge pull request #257 from HEPLean/PerturbationTheory
feat: Update species and Feynman diagram file
This commit is contained in:
commit
a6c83bd142
8 changed files with 73 additions and 32 deletions
|
@ -110,6 +110,7 @@ import HepLean.Meta.TransverseTactics
|
|||
import HepLean.PerturbationTheory.FeynmanDiagrams.Basic
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Instances.ComplexScalar
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Instances.Phi4
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Light
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Momentum
|
||||
import HepLean.PerturbationTheory.Wick.Algebra
|
||||
import HepLean.PerturbationTheory.Wick.Contract
|
||||
|
|
17
HepLean/PerturbationTheory/FeynmanDiagrams/Light.lean
Normal file
17
HepLean/PerturbationTheory/FeynmanDiagrams/Light.lean
Normal file
|
@ -0,0 +1,17 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Species
|
||||
/-!
|
||||
|
||||
# Feynman diagrams
|
||||
|
||||
This file currently contains a lighter implmentation of Feynman digrams than can be found in
|
||||
`HepLean.PerturbationTheory.FeynmanDiagrams.Basic`. Eventually this will superseed that file.
|
||||
|
||||
The implmentation here is done in conjunction with Wicks species etc.
|
||||
|
||||
This file is currently a stub.
|
||||
-/
|
|
@ -11,8 +11,6 @@ import HepLean.PerturbationTheory.Wick.Species
|
|||
Currently this file is only for an example of Wick strings, correpsonding to a
|
||||
theory with two complex scalar fields. The concepts will however generalize.
|
||||
|
||||
This file is currently a stub.
|
||||
|
||||
We will formally define the operator ring, in terms of the fields present in the theory.
|
||||
|
||||
## Futher reading
|
||||
|
@ -21,18 +19,14 @@ We will formally define the operator ring, in terms of the fields present in the
|
|||
- Ryan Thorngren (https://physics.stackexchange.com/users/10336/ryan-thorngren), Fermions,
|
||||
different species and (anti-)commutation rules, URL (version: 2019-02-20) :
|
||||
https://physics.stackexchange.com/q/461929
|
||||
- Tong, https://www.damtp.cam.ac.uk/user/tong/qft/qft.pdf
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
open CategoryTheory
|
||||
open FeynmanDiagram
|
||||
open PreFeynmanRule
|
||||
|
||||
informal_definition WickAlgebra where
|
||||
math :≈ "
|
||||
Modifications of this may be needed, in particular
|
||||
need to add asympotic states.
|
||||
|
||||
Modifications of this may be needed.
|
||||
A structure with the following data:
|
||||
- A ℤ₂-graded algebra A.
|
||||
- A map from `ψ : 𝓔 × SpaceTime → A` where 𝓔 are field colors.
|
||||
|
@ -40,9 +34,16 @@ informal_definition WickAlgebra where
|
|||
- A map `ψd : 𝓔 × SpaceTime → A`.
|
||||
Subject to the conditions:
|
||||
- The sum of `ψc` and `ψd` is `ψ`.
|
||||
- All maps land on homogeneous elements.
|
||||
- Two fields super-commute if there colors are not dual to each other.
|
||||
- The super-commutator of two fields is always in the
|
||||
center of the algebra. "
|
||||
center of the algebra.
|
||||
Asympotic states:
|
||||
- `φc : 𝓔 × SpaceTime → A`. The creation asympotic state (incoming).
|
||||
- `φd : 𝓔 × SpaceTime → A`. The destruction asympotic state (outgoing).
|
||||
Subject to the conditions:
|
||||
...
|
||||
"
|
||||
physics :≈ "This is defined to be an
|
||||
abstraction of the notion of an operator algebra."
|
||||
ref :≈ "https://physics.stackexchange.com/questions/24157/"
|
||||
|
@ -84,6 +85,17 @@ informal_definition normalOrder where
|
|||
|
||||
end WickMonomial
|
||||
|
||||
informal_definition asymptoicContract where
|
||||
math :≈ "Given two `i j : 𝓔 × SpaceTime`, the super-commutator [φd(i), ψ(j)]."
|
||||
ref :≈ "See e.g. http://www.dylanjtemples.com:82/solutions/QFT_Solution_I-6.pdf"
|
||||
|
||||
informal_definition contractAsymptotic where
|
||||
math :≈ "Given two `i j : 𝓔 × SpaceTime`, the super-commutator [ψ(i), φc(j)]."
|
||||
|
||||
informal_definition asymptoicContractAsymptotic where
|
||||
math :≈ "Given two `i j : 𝓔 × SpaceTime`, the super-commutator
|
||||
[φd(i), φc(j)]."
|
||||
|
||||
informal_definition contraction where
|
||||
math :≈ "Given two `i j : 𝓔 × SpaceTime`, the element of WickAlgebra
|
||||
defined by subtracting the normal ordering of `ψ i ψ j` from the time-ordering of
|
||||
|
@ -112,7 +124,7 @@ informal_lemma timeOrder_pair where
|
|||
|
||||
informal_definition WickMap where
|
||||
math :≈ "A linear map `vev` from the Wick algebra `A` to the underlying field such that
|
||||
`vev(...ψd(t)) = 0` and `vev(ψc(t)...) = 0`."
|
||||
`vev(...ψd(t)) = 0` and `vev(ψc(t)...) = 0`."
|
||||
physics :≈ "An abstraction of the notion of a vacuum expectation value, containing
|
||||
the necessary properties for lots of theorems to hold."
|
||||
deps :≈ [``WickAlgebra, ``WickMonomial]
|
||||
|
|
|
@ -4,6 +4,9 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.String
|
||||
import Mathlib.Algebra.Order.Ring.Nat
|
||||
import Mathlib.Data.Fintype.Sum
|
||||
import Mathlib.Logic.Equiv.Fin
|
||||
/-!
|
||||
|
||||
# Wick Contract
|
||||
|
@ -18,9 +21,6 @@ theory with two complex scalar fields. The concepts will however generalize.
|
|||
-/
|
||||
|
||||
namespace TwoComplexScalar
|
||||
open CategoryTheory
|
||||
open FeynmanDiagram
|
||||
open PreFeynmanRule
|
||||
|
||||
/-- A Wick contraction for a Wick string is a series of pairs `i` and `j` of indices
|
||||
to be contracted, subject to ordering and subject to the condition that they can
|
||||
|
@ -256,8 +256,8 @@ lemma mem_snoc' {ni : ℕ} {i : Fin ni → 𝓔} {n : ℕ} {c : Fin n → 𝓔}
|
|||
(hilej : i < j) → (hb1 : ∀ r, b1 r < i) → (hb2i : ∀ r, b2 r ≠ i) → (hb2j : ∀ r, b2 r ≠ j) →
|
||||
(hb1' : Fin.snoc b1 i = b1' ∘ Fin.cast hk') →
|
||||
(hb2' : Fin.snoc b2 j = b2' ∘ Fin.cast hk') →
|
||||
∃ (w' : WickContract str b1 b2), w = castMaps hk' hb1' hb2' (
|
||||
contr i j h hilej hb1 hb2i hb2j w') := fun
|
||||
∃ (w' : WickContract str b1 b2), w = castMaps hk' hb1' hb2'
|
||||
(contr i j h hilej hb1 hb2i hb2j w') := fun
|
||||
| string => fun hk' => by
|
||||
simp at hk'
|
||||
| contr i' j' h' hilej' hb1' hb2i' hb2j' w' => by
|
||||
|
|
|
@ -21,5 +21,4 @@ The following reference provides a good resource for Wick contractions of extern
|
|||
|
||||
namespace Wick
|
||||
|
||||
|
||||
end Wick
|
||||
|
|
|
@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Basic
|
||||
import Mathlib.Logic.Function.Basic
|
||||
import HepLean.Meta.Informal
|
||||
/-!
|
||||
|
||||
|
@ -23,17 +23,34 @@ namespace Wick
|
|||
calculate the corresponding Feynman diagrams.
|
||||
|
||||
WARNING: This definition is not yet complete.
|
||||
-/
|
||||
-/
|
||||
structure Species where
|
||||
/-- The color of Field operators which appear in a theory. -/
|
||||
𝓕 : Type
|
||||
/-- The color of Field operators which appear in a theory.
|
||||
One may wish to call these `half-edges`, however we restrict this terminology
|
||||
to Feynman diagrams. -/
|
||||
𝓯 : Type
|
||||
/-- The map taking a field operator to its dual operator. -/
|
||||
ξ : 𝓕 → 𝓕
|
||||
ξ : 𝓯 → 𝓯
|
||||
/-- The condition that `ξ` is an involution. -/
|
||||
ξ_involutive : Function.Involutive ξ
|
||||
/-- The color of vertices which appear in a theory. -/
|
||||
𝓥 : Type
|
||||
/-- The edges each vertex corresponds to. -/
|
||||
𝓥Fields : 𝓥 → Σ n, Fin n → 𝓕
|
||||
/-- The color of interaction terms which appear in a theory.
|
||||
One may wish to call these `vertices`, however we restrict this terminology
|
||||
to Feynman diagrams. -/
|
||||
𝓘 : Type
|
||||
/-- The fields associated to each interaction term. -/
|
||||
𝓘Fields : 𝓘 → Σ n, Fin n → 𝓯
|
||||
|
||||
namespace Species
|
||||
|
||||
variable (S : Species)
|
||||
|
||||
informal_definition 𝓕 where
|
||||
math :≈ "The orbits of the involution `ξ`.
|
||||
May have to define a multiplicative action of ℤ₂ on `𝓯`, and
|
||||
take the orbits of this."
|
||||
physics :≈ "The different types of fields present in a theory."
|
||||
deps :≈ [``Species]
|
||||
|
||||
end Species
|
||||
|
||||
end Wick
|
||||
|
|
|
@ -3,7 +3,8 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Species
|
||||
import HepLean.Meta.Informal
|
||||
import Mathlib.Data.Fin.Tuple.Basic
|
||||
/-!
|
||||
# Wick strings
|
||||
|
||||
|
@ -19,9 +20,6 @@ term in the ring of operators. This has yet to be implemented.
|
|||
-/
|
||||
|
||||
namespace TwoComplexScalar
|
||||
open CategoryTheory
|
||||
open FeynmanDiagram
|
||||
open PreFeynmanRule
|
||||
|
||||
/-- The colors of edges which one can associate with a vertex for a theory
|
||||
with two complex scalar fields. -/
|
||||
|
|
|
@ -13,9 +13,6 @@ Wick's theorem is related to a result in probability theory called Isserlis' the
|
|||
-/
|
||||
|
||||
namespace Wick
|
||||
open CategoryTheory
|
||||
open FeynmanDiagram
|
||||
open PreFeynmanRule
|
||||
|
||||
informal_lemma wicks_theorem where
|
||||
math :≈ "Wick's theorem for fields which are not normally ordered."
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue