diff --git a/HepLean/SpaceTime/LorentzAlgebra/Basic.lean b/HepLean/SpaceTime/LorentzAlgebra/Basic.lean index 0e104a0..2d3c750 100644 --- a/HepLean/SpaceTime/LorentzAlgebra/Basic.lean +++ b/HepLean/SpaceTime/LorentzAlgebra/Basic.lean @@ -76,6 +76,28 @@ lemma mem_iff' (A : Matrix (Fin 4) (Fin 4) ℝ) : A ∈ lorentzAlgebra ↔ A = nth_rewrite 2 [h] simp [← mul_assoc, η_sq] +lemma diag_comp (Λ : lorentzAlgebra) (μ : Fin 4) : Λ.1 μ μ = 0 := by + have h := congrArg (fun M ↦ M μ μ) $ mem_iff.mp Λ.2 + simp at h + fin_cases μ <;> + rw [η_mul, mul_η, η_explicit] at h + <;> simpa using h + +lemma time_comps (Λ : lorentzAlgebra) (i : Fin 3) : Λ.1 i.succ 0 = Λ.1 0 i.succ := by + have h := congrArg (fun M ↦ M 0 i.succ) $ mem_iff.mp Λ.2 + simp at h + fin_cases i <;> + rw [η_mul, mul_η, η_explicit] at h <;> + simpa using h + +lemma space_comps (Λ : lorentzAlgebra) (i j : Fin 3) : + Λ.1 i.succ j.succ = - Λ.1 j.succ i.succ := by + have h := congrArg (fun M ↦ M i.succ j.succ) $ mem_iff.mp Λ.2 + simp at h + fin_cases i <;> fin_cases j <;> + rw [η_mul, mul_η, η_explicit] at h <;> + simpa using h.symm + end lorentzAlgebra diff --git a/HepLean/SpaceTime/LorentzAlgebra/Basis.lean b/HepLean/SpaceTime/LorentzAlgebra/Basis.lean index f7143d2..09bccb2 100644 --- a/HepLean/SpaceTime/LorentzAlgebra/Basis.lean +++ b/HepLean/SpaceTime/LorentzAlgebra/Basis.lean @@ -19,7 +19,130 @@ open Matrix /-- The matrices which form the basis of the Lorentz algebra. -/ @[simp] def σMat (μ ν : Fin 4) : Matrix (Fin 4) (Fin 4) ℝ := fun ρ δ ↦ - η^[ρ]_[μ] * η_[ν]_[δ] - η_[μ]_[δ] * η^[ρ]_[ν] + η_[μ]_[δ] * η^[ρ]_[ν] - η^[ρ]_[μ] * η_[ν]_[δ] + +lemma σMat_in_lorentzAlgebra (μ ν : Fin 4) : σMat μ ν ∈ lorentzAlgebra := by + rw [mem_iff] + funext ρ δ + rw [Matrix.neg_mul, Matrix.neg_apply, η_mul, mul_η, transpose_apply] + apply Eq.trans ?_ (by ring : + ((η^[ρ]_[μ] * η_[ρ]_[ρ]) * η_[ν]_[δ] - η_[μ]_[δ] * (η^[ρ]_[ν] * η_[ρ]_[ρ])) = + -(η_[ρ]_[ρ] * (η_[μ]_[δ] * η^[ρ]_[ν] - η^[ρ]_[μ] * η_[ν]_[δ] ))) + apply Eq.trans (by ring : (η_[μ]_[ρ] * η^[δ]_[ν] - η^[δ]_[μ] * η_[ν]_[ρ]) * η_[δ]_[δ] + = (- (η^[δ]_[μ] * η_[δ]_[δ]) * η_[ν]_[ρ] + η_[μ]_[ρ] * (η^[δ]_[ν] * η_[δ]_[δ]))) + rw [η_mul_self, η_mul_self, η_mul_self, η_mul_self] + ring + +/-- Elements of the Lorentz algebra which form a basis thereof. -/ +@[simps!] +def σ (μ ν : Fin 4) : lorentzAlgebra := ⟨σMat μ ν, σMat_in_lorentzAlgebra μ ν⟩ + +lemma σ_anti_symm (μ ν : Fin 4) : σ μ ν = - σ ν μ := by + refine SetCoe.ext ?_ + funext ρ δ + simp only [σ_coe, σMat, NegMemClass.coe_neg, neg_apply, neg_sub] + ring + +lemma σMat_mul (α β γ δ a b: Fin 4) : + (σMat α β * σMat γ δ) a b = + η^[a]_[α] * (η_[δ]_[b] * η_[β]_[γ] - η_[γ]_[b] * η_[β]_[δ]) + - η^[a]_[β] * (η_[δ]_[b] * η_[α]_[γ]- η_[γ]_[b] * η_[α]_[δ]) := by + rw [Matrix.mul_apply] + simp only [σMat] + trans (η^[a]_[α] * η_[δ]_[b]) * ∑ x, η^[x]_[γ] * η_[β]_[x] + - (η^[a]_[α] * η_[γ]_[b]) * ∑ x, η^[x]_[δ] * η_[β]_[x] + - (η^[a]_[β] * η_[δ]_[b]) * ∑ x, η^[x]_[γ] * η_[α]_[x] + + (η^[a]_[β] * η_[γ]_[b]) * ∑ x, η^[x]_[δ] * η_[α]_[x] + repeat rw [Fin.sum_univ_four] + ring + rw [η_contract_self', η_contract_self', η_contract_self', η_contract_self'] + ring + +lemma σ_comm (α β γ δ : Fin 4) : + ⁅σ α β , σ γ δ⁆ = + η_[α]_[δ] • σ γ β + η_[α]_[γ] • σ β δ + η_[β]_[δ] • σ α γ + η_[β]_[γ] • σ δ α := by + refine SetCoe.ext ?_ + change σMat α β * σ γ δ - σ γ δ * σ α β = _ + funext a b + simp only [σ_coe, sub_apply, AddSubmonoid.coe_add, Submodule.coe_toAddSubmonoid, + Submodule.coe_smul_of_tower, add_apply, smul_apply, σMat, smul_eq_mul] + rw [σMat_mul, σMat_mul, η_symmetric α γ, η_symmetric α δ, η_symmetric β γ, η_symmetric β δ] + ring + +lemma eq_span_σ (Λ : lorentzAlgebra) : + Λ = Λ.1 0 1 • σ 0 1 + Λ.1 0 2 • σ 0 2 + Λ.1 0 3 • σ 0 3 + + Λ.1 1 2 • σ 1 2 + Λ.1 1 3 • σ 1 3 + Λ.1 2 3 • σ 2 3 := by + apply SetCoe.ext ?_ + funext a b + fin_cases a <;> fin_cases b <;> + simp only [Fin.zero_eta, Fin.isValue, Fin.mk_one, Fin.reduceFinMk, AddSubmonoid.coe_add, + Submodule.coe_smul_of_tower, σ_coe, + add_apply, smul_apply, σMat, ηUpDown, ne_eq, zero_ne_one, not_false_eq_true, + one_apply_ne, η_explicit, of_apply, cons_val_zero, + mul_zero, one_apply_eq, mul_one, sub_neg_eq_add, + zero_add, smul_eq_mul, Fin.reduceEq, cons_val_one, vecHead, vecTail, + Nat.reduceAdd, Function.comp_apply, Fin.succ_zero_eq_one, sub_self, add_zero, cons_val_two, + cons_val_three, Fin.succ_one_eq_two, mul_neg, neg_zero, sub_zero] + · exact diag_comp Λ 0 + · exact time_comps Λ 0 + · exact diag_comp Λ 1 + · exact time_comps Λ 1 + · exact space_comps Λ 1 0 + · exact diag_comp Λ 2 + · exact time_comps Λ 2 + · exact space_comps Λ 2 0 + · exact space_comps Λ 2 1 + · exact diag_comp Λ 3 + +/-- The coordinate map for the basis formed by the matrices `σ`. -/ +@[simps!] +noncomputable def σCoordinateMap : lorentzAlgebra ≃ₗ[ℝ] Fin 6 →₀ ℝ where + toFun Λ := Finsupp.equivFunOnFinite.invFun + fun i => match i with + | 0 => Λ.1 0 1 + | 1 => Λ.1 0 2 + | 2 => Λ.1 0 3 + | 3 => Λ.1 1 2 + | 4 => Λ.1 1 3 + | 5 => Λ.1 2 3 + map_add' S T := by + ext i + fin_cases i <;> rfl + map_smul' c S := by + ext i + fin_cases i <;> rfl + invFun c := c 0 • σ 0 1 + c 1 • σ 0 2 + c 2 • σ 0 3 + + c 3 • σ 1 2 + c 4 • σ 1 3 + c 5 • σ 2 3 + left_inv Λ := by + simp only [Fin.isValue, Equiv.invFun_as_coe, Finsupp.equivFunOnFinite_symm_apply_toFun] + exact (eq_span_σ Λ).symm + right_inv c := by + ext i + fin_cases i <;> simp only [Fin.isValue, Set.Finite.toFinset_setOf, ne_eq, Finsupp.coe_mk, + Fin.zero_eta, Fin.isValue, Fin.mk_one, Fin.reduceFinMk, AddSubmonoid.coe_add, + Submodule.coe_toAddSubmonoid, Submodule.coe_smul_of_tower, σ_coe, + add_apply, smul_apply, σMat, ηUpDown, ne_eq, zero_ne_one, not_false_eq_true, + one_apply_ne, η_explicit, of_apply, cons_val', cons_val_zero, empty_val', + cons_val_fin_one, vecCons_const, mul_zero, one_apply_eq, mul_one, sub_neg_eq_add, + zero_add, smul_eq_mul, Fin.reduceEq, cons_val_one, vecHead, vecTail, Nat.succ_eq_add_one, + Nat.reduceAdd, Function.comp_apply, Fin.succ_zero_eq_one, sub_self, add_zero, cons_val_two, + cons_val_three, Fin.succ_one_eq_two, mul_neg, neg_zero, sub_zero, Finsupp.equivFunOnFinite] + +/-- The basis formed by the matrices `σ`. -/ +@[simps! repr_apply_support_val repr_apply_toFun] +noncomputable def σBasis : Basis (Fin 6) ℝ lorentzAlgebra where + repr := σCoordinateMap + +instance : Module.Finite ℝ lorentzAlgebra := + Module.Finite.of_basis σBasis + +/-- The Lorentz algebra is 6-dimensional. -/ +theorem finrank_eq_six : FiniteDimensional.finrank ℝ lorentzAlgebra = 6 := by + have h := Module.mk_finrank_eq_card_basis σBasis + simp_all + simp [FiniteDimensional.finrank] + rw [h] + simp only [Cardinal.toNat_ofNat] end lorentzAlgebra diff --git a/HepLean/SpaceTime/Metric.lean b/HepLean/SpaceTime/Metric.lean index 67ce30b..b3f3a54 100644 --- a/HepLean/SpaceTime/Metric.lean +++ b/HepLean/SpaceTime/Metric.lean @@ -32,16 +32,11 @@ def η : Matrix (Fin 4) (Fin 4) ℝ := Matrix.reindex finSumFinEquiv finSumFinEq /-- The metric with lower indices. -/ notation "η_[" μ "]_[" ν "]" => η μ ν +/-- The inverse of `η`. Used for notation. -/ +def ηInv : Matrix (Fin 4) (Fin 4) ℝ := η + /-- The metric with upper indices. -/ -notation "η^[" μ "]^[" ν "]" => η μ ν - -/-- The metric with one lower and one upper index. -/ -notation "η_[" μ "]^[" ν "]" => η_[μ]_[0] * η^[0]^[ν] + η_[μ]_[1] * η^[1]^[ν] + - η_[μ]_[2] * η^[2]^[ν] + η_[μ]_[3] * η^[3]^[ν] - -/-- The metric with one lower and one upper index. -/ -notation "η^[" μ "]_[" ν "]" => η^[μ]^[0] * η_[0]_[ν] + η^[μ]^[1] * η_[1]_[ν] - + η^[μ]^[2] * η_[2]_[ν] + η^[μ]^[3] * η_[3]_[ν] +notation "η^[" μ "]^[" ν "]" => ηInv μ ν /-- A matrix with one lower and one upper index. -/ notation "["Λ"]^[" μ "]_[" ν "]" => (Λ : Matrix (Fin 4) (Fin 4) ℝ) μ ν @@ -49,6 +44,12 @@ notation "["Λ"]^[" μ "]_[" ν "]" => (Λ : Matrix (Fin 4) (Fin 4) ℝ) μ ν /-- A matrix with both lower indices. -/ notation "["Λ"]_[" μ "]_[" ν "]" => ∑ ρ, η_[μ]_[ρ] * [Λ]^[ρ]_[ν] +/-- `η` with $η^μ_ν$ indices. This is equivalent to the identity. This is used for notation. -/ +def ηUpDown : Matrix (Fin 4) (Fin 4) ℝ := 1 + +/-- The metric with one lower and one upper index. -/ +notation "η^[" μ "]_[" ν "]" => ηUpDown μ ν + lemma η_block : η = Matrix.reindex finSumFinEquiv finSumFinEquiv ( Matrix.fromBlocks (1 : Matrix (Fin 1) (Fin 1) ℝ) 0 0 (-1 : Matrix (Fin 3) (Fin 3) ℝ)) := by @@ -72,11 +73,7 @@ lemma η_explicit : η = !![(1 : ℝ), 0, 0, 0; 0, -1, 0, 0; 0, 0, -1, 0; 0, 0, fin_cases i <;> fin_cases j <;> simp_all only [Fin.zero_eta, reindex_apply, submatrix_apply] any_goals rfl - all_goals simp [finSumFinEquiv, Fin.addCases, η, Fin.zero_eta, Matrix.cons_val', - Matrix.cons_val_fin_one, Matrix.cons_val_one, - Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons, - Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one, - vecHead, vecTail, Function.comp_apply] + all_goals simp [finSumFinEquiv, Fin.addCases, η, vecHead, vecTail] any_goals rfl all_goals split all_goals simp @@ -86,11 +83,7 @@ lemma η_explicit : η = !![(1 : ℝ), 0, 0, 0; 0, -1, 0, 0; 0, 0, -1, 0; 0, 0, lemma η_off_diagonal {μ ν : Fin 4} (h : μ ≠ ν) : η μ ν = 0 := by fin_cases μ <;> fin_cases ν <;> - simp_all [η_explicit, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, - Matrix.cons_val_one, - Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons, - Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one, - vecHead, vecTail, Function.comp_apply] + simp_all [η_explicit, Fin.mk_one, Fin.mk_one, vecHead, vecTail] lemma η_symmetric (μ ν : Fin 4) : η μ ν = η ν μ := by by_cases h : μ = ν @@ -129,6 +122,26 @@ lemma η_as_diagonal : η = diagonal ![1, -1, -1, -1] := by intro μ ν fin_cases μ <;> fin_cases ν <;> rfl +lemma η_mul (Λ : Matrix (Fin 4) (Fin 4) ℝ) (μ ρ : Fin 4) : + [η * Λ]^[μ]_[ρ] = [η]^[μ]_[μ] * [Λ]^[μ]_[ρ] := by + rw [η_as_diagonal, @diagonal_mul, diagonal_apply_eq ![1, -1, -1, -1] μ] + +lemma mul_η (Λ : Matrix (Fin 4) (Fin 4) ℝ) (μ ρ : Fin 4) : + [Λ * η]^[μ]_[ρ] = [Λ]^[μ]_[ρ] * [η]^[ρ]_[ρ] := by + rw [η_as_diagonal, @mul_diagonal, diagonal_apply_eq ![1, -1, -1, -1] ρ] + +lemma η_mul_self (μ ν : Fin 4) : η^[ν]_[μ] * η_[ν]_[ν] = η_[μ]_[ν] := by + fin_cases μ <;> fin_cases ν <;> simp [ηUpDown] + +lemma η_contract_self (μ ν : Fin 4) : ∑ x, (η^[x]_[μ] * η_[x]_[ν]) = η_[μ]_[ν] := by + rw [Fin.sum_univ_four] + fin_cases μ <;> fin_cases ν <;> simp [ηUpDown] + +lemma η_contract_self' (μ ν : Fin 4) : ∑ x, (η^[x]_[μ] * η_[ν]_[x]) = η_[ν]_[μ] := by + rw [Fin.sum_univ_four] + fin_cases μ <;> fin_cases ν <;> simp [ηUpDown] + + /-- Given a point in spaceTime `x` the linear map `y → x ⬝ᵥ (η *ᵥ y)`. -/ @[simps!] @@ -249,11 +262,7 @@ lemma ηLin_matrix_eq_identity_iff (Λ : Matrix (Fin 4) (Fin 4) ℝ) : have h1 := h (stdBasis μ) (stdBasis ν) rw [ηLin_matrix_stdBasis, ηLin_η_stdBasis] at h1 fin_cases μ <;> fin_cases ν <;> - simp_all [η_explicit, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, - Matrix.cons_val_one, - Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons, - Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one, - vecHead, vecTail, Function.comp_apply] + simp_all [η_explicit, Fin.mk_one, Fin.mk_one, vecHead, vecTail] /-- The metric as a quadratic form on `spaceTime`. -/ def quadraticForm : QuadraticForm ℝ spaceTime := ηLin.toQuadraticForm