feat: Some properties of SL(2,C) and Lorentz
This commit is contained in:
parent
885c3ae204
commit
a8243f4e79
2 changed files with 126 additions and 25 deletions
|
@ -55,7 +55,7 @@ we can define a representation a representation of `SL(2, ℂ)` on spacetime.
|
|||
/-- Given an element `M ∈ SL(2, ℂ)` the linear map from `selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)` to
|
||||
itself defined by `A ↦ M * A * Mᴴ`. -/
|
||||
@[simps!]
|
||||
def toLinearMapSelfAdjointMatrix (M : SL(2, ℂ)) :
|
||||
def toSelfAdjointMap (M : SL(2, ℂ)) :
|
||||
selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) →ₗ[ℝ] selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) where
|
||||
toFun A := ⟨M.1 * A.1 * Matrix.conjTranspose M,
|
||||
by
|
||||
|
@ -70,18 +70,67 @@ def toLinearMapSelfAdjointMatrix (M : SL(2, ℂ)) :
|
|||
noncomm_ring [selfAdjoint.val_smul, Algebra.mul_smul_comm, Algebra.smul_mul_assoc,
|
||||
RingHom.id_apply]
|
||||
|
||||
lemma toLinearMapSelfAdjointMatrix_det (M : SL(2, ℂ)) (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||||
det ((toLinearMapSelfAdjointMatrix M) A).1 = det A.1 := by
|
||||
simp only [LinearMap.coe_mk, AddHom.coe_mk, toLinearMapSelfAdjointMatrix, det_mul,
|
||||
lemma toSelfAdjointMap_apply_det (M : SL(2, ℂ)) (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||||
det ((toSelfAdjointMap M) A).1 = det A.1 := by
|
||||
simp only [LinearMap.coe_mk, AddHom.coe_mk, toSelfAdjointMap, det_mul,
|
||||
selfAdjoint.mem_iff, det_conjTranspose, det_mul, det_one, RingHom.id_apply]
|
||||
simp only [SpecialLinearGroup.det_coe, one_mul, star_one, mul_one]
|
||||
|
||||
lemma toSelfAdjointMap_apply_σSAL_inl (M : SL(2, ℂ)) :
|
||||
toSelfAdjointMap M (PauliMatrix.σSAL (Sum.inl 0)) =
|
||||
((‖M.1 0 0‖ ^ 2 + ‖M.1 0 1‖ ^ 2 + ‖M.1 1 0‖ ^ 2 + ‖M.1 1 1‖ ^ 2) / 2) •
|
||||
PauliMatrix.σSAL (Sum.inl 0) +
|
||||
(- ((M.1 0 1).re * (M.1 1 1).re + (M.1 0 1).im * (M.1 1 1).im +
|
||||
(M.1 0 0).im * (M.1 1 0).im + (M.1 0 0).re * (M.1 1 0).re)) • PauliMatrix.σSAL (Sum.inr 0)
|
||||
+ ((- (M.1 0 0).re * (M.1 1 0).im + ↑(M.1 1 0).re * (M.1 0 0).im
|
||||
- (M.1 0 1).re * (M.1 1 1).im + (M.1 0 1).im * (M.1 1 1).re)) • PauliMatrix.σSAL (Sum.inr 1)
|
||||
+ ((- ‖M.1 0 0‖ ^ 2 - ‖M.1 0 1‖ ^ 2 + ‖M.1 1 0‖ ^ 2 + ‖M.1 1 1‖ ^ 2) / 2) •
|
||||
PauliMatrix.σSAL (Sum.inr 2) := by
|
||||
simp only [toSelfAdjointMap, PauliMatrix.σSAL, Fin.isValue, Basis.coe_mk, PauliMatrix.σSAL',
|
||||
PauliMatrix.σ0, LinearMap.coe_mk, AddHom.coe_mk, norm_eq_abs, neg_add_rev, PauliMatrix.σ1,
|
||||
neg_of, neg_cons, neg_zero, neg_empty, neg_mul, PauliMatrix.σ2, neg_neg, PauliMatrix.σ3]
|
||||
ext1
|
||||
simp only [Fin.isValue, AddSubgroup.coe_add, selfAdjoint.val_smul, smul_of, smul_cons, real_smul,
|
||||
ofReal_div, ofReal_add, ofReal_pow, ofReal_ofNat, mul_one, smul_zero, smul_empty, smul_neg,
|
||||
ofReal_neg, ofReal_mul, neg_add_rev, neg_neg, of_add_of, add_cons, head_cons, add_zero,
|
||||
tail_cons, zero_add, empty_add_empty, ofReal_sub]
|
||||
conv => lhs; erw [← eta_fin_two 1, mul_one]
|
||||
conv => lhs; lhs; rw [eta_fin_two M.1]
|
||||
conv => lhs; rhs; rw [eta_fin_two M.1ᴴ]
|
||||
simp
|
||||
rw [mul_conj', mul_conj', mul_conj', mul_conj']
|
||||
ext x y
|
||||
match x, y with
|
||||
| 0, 0 =>
|
||||
simp
|
||||
ring_nf
|
||||
| 0, 1 =>
|
||||
simp
|
||||
ring_nf
|
||||
rw [← re_add_im (M.1 0 0), ← re_add_im (M.1 0 1), ← re_add_im (M.1 1 0), ← re_add_im (M.1 1 1)]
|
||||
simp [- re_add_im]
|
||||
ring_nf
|
||||
simp
|
||||
ring
|
||||
| 1, 0 =>
|
||||
simp
|
||||
ring_nf
|
||||
rw [← re_add_im (M.1 0 0), ← re_add_im (M.1 0 1), ← re_add_im (M.1 1 0), ← re_add_im (M.1 1 1)]
|
||||
simp [- re_add_im]
|
||||
ring_nf
|
||||
simp
|
||||
ring
|
||||
| 1, 1 =>
|
||||
simp
|
||||
ring_nf
|
||||
|
||||
|
||||
/-- The monoid homomorphisms from `SL(2, ℂ)` to matrices indexed by `Fin 1 ⊕ Fin 3`
|
||||
formed by the action `M A Mᴴ`. -/
|
||||
def toMatrix : SL(2, ℂ) →* Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ where
|
||||
toFun M := LinearMap.toMatrix PauliMatrix.σSAL PauliMatrix.σSAL (toLinearMapSelfAdjointMatrix M)
|
||||
toFun M := LinearMap.toMatrix PauliMatrix.σSAL PauliMatrix.σSAL (toSelfAdjointMap M)
|
||||
map_one' := by
|
||||
simp only [toLinearMapSelfAdjointMatrix, SpecialLinearGroup.coe_one, one_mul, conjTranspose_one,
|
||||
simp only [toSelfAdjointMap, SpecialLinearGroup.coe_one, one_mul, conjTranspose_one,
|
||||
mul_one, Subtype.coe_eta]
|
||||
erw [LinearMap.toMatrix_one]
|
||||
map_mul' M N := by
|
||||
|
@ -89,14 +138,14 @@ def toMatrix : SL(2, ℂ) →* Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ wh
|
|||
rw [← LinearMap.toMatrix_mul]
|
||||
apply congrArg
|
||||
ext1 x
|
||||
simp only [toLinearMapSelfAdjointMatrix, SpecialLinearGroup.coe_mul, conjTranspose_mul,
|
||||
simp only [toSelfAdjointMap, SpecialLinearGroup.coe_mul, conjTranspose_mul,
|
||||
LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply, Subtype.mk.injEq]
|
||||
noncomm_ring
|
||||
|
||||
open Lorentz in
|
||||
lemma toMatrix_apply_contrMod (M : SL(2, ℂ)) (v : ContrMod 3) :
|
||||
(toMatrix M) *ᵥ v = ContrMod.toSelfAdjoint.symm
|
||||
((toLinearMapSelfAdjointMatrix M) (ContrMod.toSelfAdjoint v)) := by
|
||||
((toSelfAdjointMap M) (ContrMod.toSelfAdjoint v)) := by
|
||||
simp only [ContrMod.mulVec, toMatrix, MonoidHom.coe_mk, OneHom.coe_mk]
|
||||
obtain ⟨a, ha⟩ := ContrMod.toSelfAdjoint.symm.surjective v
|
||||
subst ha
|
||||
|
@ -104,7 +153,7 @@ lemma toMatrix_apply_contrMod (M : SL(2, ℂ)) (v : ContrMod 3) :
|
|||
simp only [ContrMod.toSelfAdjoint, LinearEquiv.trans_symm, LinearEquiv.symm_symm,
|
||||
LinearEquiv.trans_apply]
|
||||
change ContrMod.toFin1dℝEquiv.symm
|
||||
((((LinearMap.toMatrix PauliMatrix.σSAL PauliMatrix.σSAL) (toLinearMapSelfAdjointMatrix M)))
|
||||
((((LinearMap.toMatrix PauliMatrix.σSAL PauliMatrix.σSAL) (toSelfAdjointMap M)))
|
||||
*ᵥ (((Finsupp.linearEquivFunOnFinite ℝ ℝ (Fin 1 ⊕ Fin 3)) (PauliMatrix.σSAL.repr a)))) = _
|
||||
apply congrArg
|
||||
erw [LinearMap.toMatrix_mulVec_repr]
|
||||
|
@ -117,7 +166,7 @@ lemma toMatrix_mem_lorentzGroup (M : SL(2, ℂ)) : toMatrix M ∈ LorentzGroup 3
|
|||
rw [Lorentz.contrContrContractField.same_eq_det_toSelfAdjoint]
|
||||
rw [toMatrix_apply_contrMod]
|
||||
rw [LinearEquiv.apply_symm_apply]
|
||||
rw [toLinearMapSelfAdjointMatrix_det]
|
||||
rw [toSelfAdjointMap_apply_det]
|
||||
rw [Lorentz.contrContrContractField.same_eq_det_toSelfAdjoint]
|
||||
|
||||
/-- The group homomorphism from `SL(2, ℂ)` to the Lorentz group `𝓛`. -/
|
||||
|
@ -133,28 +182,27 @@ def toLorentzGroup : SL(2, ℂ) →* LorentzGroup 3 where
|
|||
|
||||
lemma toLorentzGroup_eq_σSAL (M : SL(2, ℂ)) :
|
||||
toLorentzGroup M = LinearMap.toMatrix
|
||||
PauliMatrix.σSAL PauliMatrix.σSAL (toLinearMapSelfAdjointMatrix M) := by
|
||||
PauliMatrix.σSAL PauliMatrix.σSAL (toSelfAdjointMap M) := by
|
||||
rfl
|
||||
|
||||
lemma toLinearMapSelfAdjointMatrix_basis (i : Fin 1 ⊕ Fin 3) :
|
||||
toLinearMapSelfAdjointMatrix M (PauliMatrix.σSAL i) =
|
||||
∑ j, (toLorentzGroup M).1 j i •
|
||||
PauliMatrix.σSAL j := by
|
||||
lemma toSelfAdjointMap_basis (i : Fin 1 ⊕ Fin 3) :
|
||||
toSelfAdjointMap M (PauliMatrix.σSAL i) =
|
||||
∑ j, (toLorentzGroup M).1 j i • PauliMatrix.σSAL j := by
|
||||
rw [toLorentzGroup_eq_σSAL]
|
||||
simp only [LinearMap.toMatrix_apply, Finset.univ_unique,
|
||||
Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton]
|
||||
nth_rewrite 1 [← (Basis.sum_repr PauliMatrix.σSAL
|
||||
((toLinearMapSelfAdjointMatrix M) (PauliMatrix.σSAL i)))]
|
||||
((toSelfAdjointMap M) (PauliMatrix.σSAL i)))]
|
||||
rfl
|
||||
|
||||
lemma toLinearMapSelfAdjointMatrix_σSA (i : Fin 1 ⊕ Fin 3) :
|
||||
toLinearMapSelfAdjointMatrix M (PauliMatrix.σSA i) =
|
||||
lemma toSelfAdjointMap_σSA (i : Fin 1 ⊕ Fin 3) :
|
||||
toSelfAdjointMap M (PauliMatrix.σSA i) =
|
||||
∑ j, (toLorentzGroup M⁻¹).1 i j • PauliMatrix.σSA j := by
|
||||
have h1 : (toLorentzGroup M⁻¹).1 = minkowskiMatrix.dual (toLorentzGroup M).1 := by
|
||||
simp
|
||||
simp only [h1]
|
||||
rw [PauliMatrix.σSA_minkowskiMetric_σSAL, _root_.map_smul]
|
||||
rw [toLinearMapSelfAdjointMatrix_basis]
|
||||
rw [toSelfAdjointMap_basis]
|
||||
rw [Finset.smul_sum]
|
||||
apply congrArg
|
||||
funext j
|
||||
|
@ -163,6 +211,63 @@ lemma toLinearMapSelfAdjointMatrix_σSA (i : Fin 1 ⊕ Fin 3) :
|
|||
apply congrArg
|
||||
exact Eq.symm (minkowskiMatrix.dual_apply_minkowskiMatrix ((toLorentzGroup M).1) i j)
|
||||
|
||||
/-- The first column of the Lorentz matrix formed from an element of `SL(2, ℂ)`. -/
|
||||
lemma toLorentzGroup_fst_col (M : SL(2, ℂ)) :
|
||||
(fun μ => (toLorentzGroup M).1 μ (Sum.inl 0)) = fun μ =>
|
||||
match μ with
|
||||
| Sum.inl 0 => ((‖M.1 0 0‖ ^ 2 + ‖M.1 0 1‖ ^ 2 + ‖M.1 1 0‖ ^ 2 + ‖M.1 1 1‖ ^ 2) / 2)
|
||||
| Sum.inr 0 => (- ((M.1 0 1).re * (M.1 1 1).re + (M.1 0 1).im * (M.1 1 1).im +
|
||||
(M.1 0 0).im * (M.1 1 0).im + (M.1 0 0).re * (M.1 1 0).re))
|
||||
| Sum.inr 1 => ((- (M.1 0 0).re * (M.1 1 0).im + ↑(M.1 1 0).re * (M.1 0 0).im
|
||||
- (M.1 0 1).re * (M.1 1 1).im + (M.1 0 1).im * (M.1 1 1).re))
|
||||
| Sum.inr 2 => ((- ‖M.1 0 0‖ ^ 2 - ‖M.1 0 1‖ ^ 2 + ‖M.1 1 0‖ ^ 2 + ‖M.1 1 1‖ ^ 2) / 2) := by
|
||||
let k : Fin 1 ⊕ Fin 3 → ℝ := fun μ =>
|
||||
match μ with
|
||||
| Sum.inl 0 => ((‖M.1 0 0‖ ^ 2 + ‖M.1 0 1‖ ^ 2 + ‖M.1 1 0‖ ^ 2 + ‖M.1 1 1‖ ^ 2) / 2)
|
||||
| Sum.inr 0 => (- ((M.1 0 1).re * (M.1 1 1).re + (M.1 0 1).im * (M.1 1 1).im +
|
||||
(M.1 0 0).im * (M.1 1 0).im + (M.1 0 0).re * (M.1 1 0).re))
|
||||
| Sum.inr 1 => ((- (M.1 0 0).re * (M.1 1 0).im + ↑(M.1 1 0).re * (M.1 0 0).im
|
||||
- (M.1 0 1).re * (M.1 1 1).im + (M.1 0 1).im * (M.1 1 1).re))
|
||||
| Sum.inr 2 => ((- ‖M.1 0 0‖ ^ 2 - ‖M.1 0 1‖ ^ 2 + ‖M.1 1 0‖ ^ 2 + ‖M.1 1 1‖ ^ 2) / 2)
|
||||
change (fun μ => (toLorentzGroup M).1 μ (Sum.inl 0)) = k
|
||||
have h1 : toSelfAdjointMap M (PauliMatrix.σSAL (Sum.inl 0)) = ∑ μ, k μ • PauliMatrix.σSAL μ := by
|
||||
simp [Fin.sum_univ_three]
|
||||
rw [toSelfAdjointMap_apply_σSAL_inl]
|
||||
abel
|
||||
rw [toSelfAdjointMap_basis] at h1
|
||||
have h1x := sub_eq_zero_of_eq h1
|
||||
rw [← Finset.sum_sub_distrib] at h1x
|
||||
funext μ
|
||||
refine sub_eq_zero.mp ?_
|
||||
refine Fintype.linearIndependent_iff.mp PauliMatrix.σSAL.linearIndependent
|
||||
(fun x => ((toLorentzGroup M).1 x (Sum.inl 0) - k x)) ?_ μ
|
||||
rw [← h1x]
|
||||
congr
|
||||
funext x
|
||||
exact sub_smul ((toLorentzGroup M).1 x (Sum.inl 0)) (k x) (PauliMatrix.σSAL x)
|
||||
|
||||
/-- The first element of the image of `SL(2, ℂ)` in the Lorentz group. -/
|
||||
lemma toLorentzGroup_inl_inl (M : SL(2, ℂ)) :
|
||||
(toLorentzGroup M).1 (Sum.inl 0) (Sum.inl 0) =
|
||||
((‖M.1 0 0‖ ^ 2 + ‖M.1 0 1‖ ^ 2 + ‖M.1 1 0‖ ^ 2 + ‖M.1 1 1‖ ^ 2) / 2) := by
|
||||
change (fun μ => (toLorentzGroup M).1 μ (Sum.inl 0)) (Sum.inl 0) = _
|
||||
rw [toLorentzGroup_fst_col]
|
||||
|
||||
/-- The image of `SL(2, ℂ)` in the Lorentz group is orthochronous. -/
|
||||
lemma toLorentzGroup_isOrthochronous (M : SL(2, ℂ)) :
|
||||
LorentzGroup.IsOrthochronous (toLorentzGroup M) := by
|
||||
rw [LorentzGroup.IsOrthochronous]
|
||||
rw [toLorentzGroup_inl_inl]
|
||||
apply div_nonneg
|
||||
· apply add_nonneg
|
||||
· apply add_nonneg
|
||||
· apply add_nonneg
|
||||
· exact sq_nonneg _
|
||||
· exact sq_nonneg _
|
||||
· exact sq_nonneg _
|
||||
· exact sq_nonneg _
|
||||
· exact zero_le_two
|
||||
|
||||
/-!
|
||||
|
||||
## Homomorphism to the restricted Lorentz group
|
||||
|
@ -176,13 +281,9 @@ informal_lemma toLorentzGroup_det_one where
|
|||
math :≈ "The determinant of the image of `SL(2, ℂ)` in the Lorentz group is one."
|
||||
deps :≈ [``toLorentzGroup]
|
||||
|
||||
informal_lemma toLorentzGroup_inl_inl_nonneg where
|
||||
math :≈ "The time coponent of the image of `SL(2, ℂ)` in the Lorentz group is non-negative."
|
||||
deps :≈ [``toLorentzGroup]
|
||||
|
||||
informal_lemma toRestrictedLorentzGroup where
|
||||
math :≈ "The homomorphism from `SL(2, ℂ)` to the restricted Lorentz group."
|
||||
deps :≈ [``toLorentzGroup, ``toLorentzGroup_det_one, ``toLorentzGroup_inl_inl_nonneg,
|
||||
deps :≈ [``toLorentzGroup, ``toLorentzGroup_det_one, ``toLorentzGroup_isOrthochronous,
|
||||
``LorentzGroup.Restricted]
|
||||
|
||||
/-! TODO: Define homomorphism from `SL(2, ℂ)` to the restricted Lorentz group. -/
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue