refactor: Move Lemmas
This commit is contained in:
parent
b0c5ed894f
commit
a9143f79b6
2 changed files with 18 additions and 12 deletions
|
@ -33,17 +33,6 @@ def Contr (d : ℕ) : Rep ℝ (LorentzGroup d) := Rep.of ContrMod.rep
|
|||
instance : TopologicalSpace (Contr d) := TopologicalSpace.induced
|
||||
ContrMod.toFin1dℝEquiv (Pi.topologicalSpace)
|
||||
|
||||
instance : TopologicalSpace (ContrMod d) := TopologicalSpace.induced
|
||||
ContrMod.toFin1dℝEquiv (Pi.topologicalSpace)
|
||||
|
||||
lemma toFin1dℝEquiv_isInducing : IsInducing (@ContrMod.toFin1dℝEquiv d) := by
|
||||
exact { eq_induced := rfl }
|
||||
|
||||
lemma toFin1dℝEquiv_symm_isInducing : IsInducing ((@ContrMod.toFin1dℝEquiv d).symm) := by
|
||||
let x := Equiv.toHomeomorphOfIsInducing (@ContrMod.toFin1dℝEquiv d).toEquiv
|
||||
toFin1dℝEquiv_isInducing
|
||||
exact Homeomorph.isInducing x.symm
|
||||
|
||||
lemma continuous_contr {T : Type} [TopologicalSpace T] (f : T → Contr d)
|
||||
(h : Continuous (fun i => (f i).toFin1dℝ)) : Continuous f := by
|
||||
exact continuous_induced_rng.mpr h
|
||||
|
@ -51,7 +40,7 @@ lemma continuous_contr {T : Type} [TopologicalSpace T] (f : T → Contr d)
|
|||
lemma contr_continuous {T : Type} [TopologicalSpace T] (f : Contr d → T)
|
||||
(h : Continuous (f ∘ (@ContrMod.toFin1dℝEquiv d).symm)) : Continuous f := by
|
||||
let x := Equiv.toHomeomorphOfIsInducing (@ContrMod.toFin1dℝEquiv d).toEquiv
|
||||
toFin1dℝEquiv_isInducing
|
||||
ContrMod.toFin1dℝEquiv_isInducing
|
||||
rw [← Homeomorph.comp_continuous_iff' x.symm]
|
||||
exact h
|
||||
|
||||
|
|
|
@ -274,6 +274,23 @@ lemma toSelfAdjoint_symm_basis (i : Fin 1 ⊕ Fin 3) :
|
|||
refine (LinearEquiv.symm_apply_eq toSelfAdjoint).mpr ?_
|
||||
rw [toSelfAdjoint_stdBasis]
|
||||
|
||||
/-!
|
||||
## Topology
|
||||
-/
|
||||
|
||||
|
||||
instance : TopologicalSpace (ContrMod d) := TopologicalSpace.induced
|
||||
ContrMod.toFin1dℝEquiv (Pi.topologicalSpace)
|
||||
|
||||
|
||||
lemma toFin1dℝEquiv_isInducing : IsInducing (@ContrMod.toFin1dℝEquiv d) := by
|
||||
exact { eq_induced := rfl }
|
||||
|
||||
lemma toFin1dℝEquiv_symm_isInducing : IsInducing ((@ContrMod.toFin1dℝEquiv d).symm) := by
|
||||
let x := Equiv.toHomeomorphOfIsInducing (@ContrMod.toFin1dℝEquiv d).toEquiv
|
||||
toFin1dℝEquiv_isInducing
|
||||
exact Homeomorph.isInducing x.symm
|
||||
|
||||
end ContrMod
|
||||
|
||||
/-- The module for covariant (up-index) complex Lorentz vectors. -/
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue