refactor: Delete files and fix imports
This commit is contained in:
parent
3c8aaa4ec9
commit
aad3afd3a7
10 changed files with 7 additions and 1768 deletions
15
HepLean.lean
15
HepLean.lean
|
@ -117,15 +117,14 @@ import HepLean.Meta.TransverseTactics
|
|||
import HepLean.PerturbationTheory.FeynmanDiagrams.Basic
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Instances.ComplexScalar
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Instances.Phi4
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Light
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Momentum
|
||||
import HepLean.PerturbationTheory.Wick.Algebra
|
||||
import HepLean.PerturbationTheory.Wick.Contract
|
||||
import HepLean.PerturbationTheory.Wick.MomentumSpace
|
||||
import HepLean.PerturbationTheory.Wick.PositionSpace
|
||||
import HepLean.PerturbationTheory.Wick.Species
|
||||
import HepLean.PerturbationTheory.Wick.String
|
||||
import HepLean.PerturbationTheory.Wick.Theorem
|
||||
import HepLean.PerturbationTheory.Wick.Koszul.Contraction
|
||||
import HepLean.PerturbationTheory.Wick.Koszul.Grade
|
||||
import HepLean.PerturbationTheory.Wick.Koszul.OfList
|
||||
import HepLean.PerturbationTheory.Wick.Koszul.OperatorMap
|
||||
import HepLean.PerturbationTheory.Wick.Koszul.Order
|
||||
import HepLean.PerturbationTheory.Wick.Koszul.SuperCommute
|
||||
import HepLean.PerturbationTheory.Wick.Koszul.SuperCommuteM
|
||||
import HepLean.SpaceTime.Basic
|
||||
import HepLean.SpaceTime.CliffordAlgebra
|
||||
import HepLean.StandardModel.Basic
|
||||
|
|
|
@ -1,63 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Contract
|
||||
import HepLean.PerturbationTheory.Wick.Species
|
||||
/-!
|
||||
|
||||
# Feynman diagrams
|
||||
|
||||
This file currently contains a lighter implmentation of Feynman digrams than can be found in
|
||||
`HepLean.PerturbationTheory.FeynmanDiagrams.Basic`. Eventually this will superseed that file.
|
||||
|
||||
The implmentation here is done in conjunction with Wicks species etc.
|
||||
|
||||
-/
|
||||
/-! TODO: Remove this namespace-/
|
||||
namespace LightFeynman
|
||||
|
||||
informal_definition FeynmanDiagram where
|
||||
math :≈ "
|
||||
Let S be a WickSpecies
|
||||
A Feynman diagram contains the following data:
|
||||
- A type of vertices 𝓥 → S.𝓯 ⊕ S.𝓘.
|
||||
- A type of edges ed : 𝓔 → S.𝓕.
|
||||
- A type of half-edges 𝓱𝓔 with maps `e : 𝓱𝓔 → 𝓔`, `v : 𝓱𝓔 → 𝓥` and `f : 𝓱𝓔 → S.𝓯`
|
||||
Subject to the following conditions:
|
||||
- `𝓱𝓔` is a double cover of `𝓔` through `e`. That is,
|
||||
for each edge `x : 𝓔` there exists an isomorphism between `i : Fin 2 → e⁻¹ 𝓱𝓔 {x}`.
|
||||
- These isomorphisms must satisfy `⟦f(i(0))⟧ = ⟦f(i(1))⟧ = ed(e)` and `f(i(0)) = S.ξ (f(i(1)))`.
|
||||
- For each vertex `ver : 𝓥` there exists an isomorphism between the object (roughly)
|
||||
`(𝓘Fields v).2` and the pullback of `v` along `ver`."
|
||||
deps :≈ [``Wick.Species]
|
||||
|
||||
informal_definition _root_.Wick.Contract.toFeynmanDiagram where
|
||||
math :≈ "The Feynman diagram constructed from a complete Wick contraction."
|
||||
deps :≈ [``Wick.WickContract, ``FeynmanDiagram]
|
||||
|
||||
informal_lemma _root_.Wick.Contract.toFeynmanDiagram_surj where
|
||||
math :≈ "The map from Wick contractions to Feynman diagrams is surjective."
|
||||
physics :≈ "Every Feynman digram corresponds to some Wick contraction."
|
||||
deps :≈ [``Wick.WickContract, ``FeynmanDiagram]
|
||||
|
||||
informal_definition FeynmanDiagram.toSimpleGraph where
|
||||
math :≈ "The simple graph underlying a Feynman diagram."
|
||||
deps :≈ [``FeynmanDiagram]
|
||||
|
||||
informal_definition FeynmanDiagram.IsConnected where
|
||||
math :≈ "A Feynman diagram is connected if its underlying simple graph is connected."
|
||||
deps :≈ [``FeynmanDiagram]
|
||||
|
||||
informal_definition _root_.Wick.Contract.toFeynmanDiagram_isConnected_iff where
|
||||
math :≈ "The Feynman diagram corresponding to a Wick contraction is connected
|
||||
if and only if the Wick contraction is connected."
|
||||
deps :≈ [``Wick.WickContract.IsConnected, ``FeynmanDiagram.IsConnected]
|
||||
|
||||
/-! TODO: Define an equivalence relation on Wick contracts related to the their underlying tensors
|
||||
been equal after permutation. Show that two Wick contractions are equal under this
|
||||
equivalence relation if and only if they have the same Feynman diagram. First step
|
||||
is to turn these statements into appropriate informal lemmas and definitions. -/
|
||||
|
||||
end LightFeynman
|
|
@ -1,663 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Species
|
||||
import HepLean.PerturbationTheory.Wick.Koszul
|
||||
import HepLean.Lorentz.RealVector.Basic
|
||||
import HepLean.Mathematics.Fin
|
||||
import HepLean.SpaceTime.Basic
|
||||
import HepLean.Mathematics.SuperAlgebra.Basic
|
||||
import HepLean.Mathematics.List
|
||||
import HepLean.Meta.Notes.Basic
|
||||
import Init.Data.List.Sort.Basic
|
||||
/-!
|
||||
|
||||
# Operator algebra
|
||||
|
||||
Currently this file is only for an example of Wick strings, correpsonding to a
|
||||
theory with two complex scalar fields. The concepts will however generalize.
|
||||
|
||||
We will formally define the operator ring, in terms of the fields present in the theory.
|
||||
|
||||
## Futher reading
|
||||
|
||||
- https://physics.stackexchange.com/questions/258718/ and links therein
|
||||
- Ryan Thorngren (https://physics.stackexchange.com/users/10336/ryan-thorngren), Fermions,
|
||||
different species and (anti-)commutation rules, URL (version: 2019-02-20) :
|
||||
https://physics.stackexchange.com/q/461929
|
||||
- Tong, https://www.damtp.cam.ac.uk/user/tong/qft/qft.pdf
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
note r"
|
||||
<h2>Operator algebra</h2>
|
||||
Given a Wick Species $S$, we can define the operator algebra of that theory.
|
||||
The operator algebra is a super-algebra over the complex numbers, which acts on
|
||||
the Hilbert space of the theory. A super-algebra is an algebra with a $\mathbb{Z}/2$ grading.
|
||||
To do pertubation theory in a QFT we need a need some basic properties of the operator algebra,
|
||||
$A$.
|
||||
<br><br>
|
||||
For every field $f ∈ \mathcal{f}$, we have a number of families of operators. For every
|
||||
space-time point $x ∈ \mathbb{R}^4$, we have the operators $ψ(f, x)$ which we decomponse into
|
||||
a creation and destruction part, $ψ_c(f, x)$ and $ψ_d(f, x)$ respectively. Thus
|
||||
$ψ(f, x) = ψ_c(f, x) + ψ_d(f, x)$.
|
||||
For each momentum $p$ we also have the asymptotic states $φ_c(f, p)$ and $φ_d(f, p)$.
|
||||
<br><br>
|
||||
If the field $f$ corresponds to a fermion, then all of these operators are homogeneous elements
|
||||
in the non-identity part of $A$. Conversely, if the field $f$ corresponds to a boson, then all
|
||||
of these operators are homogeneous elements in the module of $A$ corresponding to
|
||||
$0 ∈ \mathbb{Z}/2$.
|
||||
<br><br>
|
||||
The super-commutator of any of the operators above is in the center of the algebra. Moreover,
|
||||
the following super-commutators are zero:
|
||||
<ul>
|
||||
<li>$[ψ_c(f, x), ψ_c(g, y)] = 0$</li>
|
||||
<li>$[ψ_d(f, x), ψ_d(g, y)] = 0$</li>
|
||||
<li>$[φ_c(f, p), φ_c(g, q)] = 0$</li>
|
||||
<li>$[φ_d(f, p), φ_d(g, q)] = 0$</li>
|
||||
<li>$[φ_c(f, p), φ_d(g, q)] = 0$ for $f \neq \xi g$</li>
|
||||
<li>$[φ_d(f, p), ψ_c(g, y)] = 0$ for $f \neq \xi g$</li>
|
||||
<li>$[φ_c(f, p), ψ_d(g, y)] = 0$ for $f \neq \xi g$</li>
|
||||
</ul>
|
||||
<br>
|
||||
This basic structure constitutes what we call a Wick Algebra:
|
||||
"
|
||||
|
||||
/-- The abstract notion of a operator algebra containing all the necessary ingrediants
|
||||
to do perturbation theory.
|
||||
Warning: The definition here is not complete. -/
|
||||
@[note_attr]
|
||||
structure WickAlgebra (S : Species) where
|
||||
/-- The underlying operator algebra. -/
|
||||
A : Type
|
||||
/-- The type `A` is a semiring. -/
|
||||
[A_semiring : Semiring A]
|
||||
/-- The type `A` is an algebra. -/
|
||||
[A_algebra : Algebra ℂ A]
|
||||
/-- Position based field operators. -/
|
||||
ψ : S.𝓯 → SpaceTime → A
|
||||
/-- Position based constructive operators. -/
|
||||
ψc : S.𝓯 → SpaceTime → A
|
||||
/-- Position based destructive operators. -/
|
||||
ψd : S.𝓯 → SpaceTime → A
|
||||
/-- Constructive asymptotic operators. -/
|
||||
φc : S.𝓯 → Lorentz.Contr 3 → A
|
||||
/-- Distructive asymptotic operators. -/
|
||||
φd : S.𝓯 → Lorentz.Contr 3 → A
|
||||
ψc_ψd : ∀ i x, ψc i x + ψd i x = ψ i x
|
||||
/- Self comutators. -/
|
||||
ψc_comm_ψc : ∀ i j x y, ψc i x * ψc j y + (S.commFactor i j) • ψc j y * ψc i x = 0
|
||||
ψd_comm_ψd : ∀ i j x y, ψd i x * ψd j y + (S.commFactor i j) • ψd j y * ψd i x = 0
|
||||
φc_comm_φc : ∀ i j x y, φc i x * φc j y + (S.commFactor i j) • φc j y * φc i x = 0
|
||||
φd_comm_φd : ∀ i j x y, φd i x * φd j y + (S.commFactor i j) • φd j y * φd i x = 0
|
||||
/- Cross comutators. -/
|
||||
|
||||
namespace WickAlgebra
|
||||
|
||||
variable {S : Species} (𝓞 : WickAlgebra S)
|
||||
|
||||
/-- The type `A` of a Wick algebra is a semi-ring. -/
|
||||
instance : Semiring 𝓞.A := 𝓞.A_semiring
|
||||
|
||||
/-- The type `A` of a Wick algebra is an algebra. -/
|
||||
instance : Algebra ℂ 𝓞.A := 𝓞.A_algebra
|
||||
|
||||
end WickAlgebra
|
||||
|
||||
namespace Species
|
||||
|
||||
variable (S : Species)
|
||||
|
||||
note r"
|
||||
<h2>Order</h2>
|
||||
Suppose we have a type $I$ with a order $r$, a map $g : I \to \mathbb{Z}/2$,
|
||||
and a map $f : I \to A$ such that $f(i) \in A_{g(i)}$.
|
||||
Consider the free algebra generated by $I$, which we will denote $A_I$.
|
||||
The map $f$ can be extended to a map $T_r : A_I \to A$ such that
|
||||
a monomial $i_1 \cdots i_n$ gets mapped to $(-1)^{K(σ)}f(i_{σ(1)})...f(i_{σ(n)})$ where $σ$ is the
|
||||
permutation oredering the $i$'s by $r$ (preserving the order of terms which are equal under $r$),
|
||||
and $K(σ)$ is the Koszul sign factor. (see e.g. PSE:24157)
|
||||
<br><br>
|
||||
There are two types $I$ we are intrested in.
|
||||
"
|
||||
|
||||
|
||||
/-- The indexing set of constructive and destructive position based operators. -/
|
||||
def ConstDestAlgebra.index : Type := Fin 2 × S.𝓯 × SpaceTime
|
||||
|
||||
/-- The free algebra generated by constructive and destructive parts of fields position-based
|
||||
fields. -/
|
||||
abbrev ConstDestAlgebra := FreeAlgebra ℂ (ConstDestAlgebra.index S)
|
||||
|
||||
/-- The indexing set of position based field operators. -/
|
||||
def FieldAlgebra.index : Type := S.𝓯 × SpaceTime
|
||||
|
||||
/-- The free algebra generated by fields. -/
|
||||
abbrev FieldAlgebra := FreeAlgebra ℂ (FieldAlgebra.index S)
|
||||
|
||||
namespace ConstDestAlgebra
|
||||
|
||||
variable {S} (𝓞 : WickAlgebra S)
|
||||
|
||||
/-- The inclusion of constructive and destructive fields into the full operator algebra. -/
|
||||
def toWickAlgebra : ConstDestAlgebra S →ₐ[ℂ] 𝓞.A :=
|
||||
FreeAlgebra.lift ℂ (fun (i, f, x) =>
|
||||
match i with
|
||||
| 0 => 𝓞.ψc f x
|
||||
| 1 => 𝓞.ψd f x)
|
||||
|
||||
@[simp]
|
||||
lemma toWickAlgebra_ι_zero (x : S.𝓯 × SpaceTime) :
|
||||
toWickAlgebra 𝓞 (FreeAlgebra.ι ℂ (0, x)) = 𝓞.ψc x.1 x.2 := by
|
||||
simp [toWickAlgebra]
|
||||
|
||||
@[simp]
|
||||
lemma toWickAlgebra_ι_one (x : S.𝓯 × SpaceTime) :
|
||||
toWickAlgebra 𝓞 (FreeAlgebra.ι ℂ (1, x)) = 𝓞.ψd x.1 x.2 := by
|
||||
simp [toWickAlgebra]
|
||||
|
||||
/-- The time ordering relation on constructive and destructive operators. -/
|
||||
def timeOrderRel : index S → index S → Prop := fun x y => y.2.2 0 ≤ x.2.2 0
|
||||
|
||||
/-- The normal ordering relation on constructive and destructive operators. -/
|
||||
def normalOrderRel : index S → index S → Prop := fun x y => x.1 ≤ y.1
|
||||
|
||||
/-- The normal ordering relation of constructive and destructive operators is decidable. -/
|
||||
instance : DecidableRel (@normalOrderRel S) := fun a b => a.1.decLe b.1
|
||||
|
||||
noncomputable section
|
||||
|
||||
/-- The time ordering relation of constructive and destructive operators is decidable. -/
|
||||
instance : DecidableRel (@timeOrderRel S) :=
|
||||
fun a b => Real.decidableLE (b.2.2 0) (a.2.2 0)
|
||||
|
||||
/-- The time ordering of constructive and destructive operators. -/
|
||||
def timeOrder (q : index S → Fin 2) : S.ConstDestAlgebra →ₗ[ℂ] S.ConstDestAlgebra :=
|
||||
koszulOrder timeOrderRel q
|
||||
|
||||
/-- The normal ordering of constructive and destructive operators. -/
|
||||
def normalOrder (q : index S → Fin 2) : S.ConstDestAlgebra →ₗ[ℂ] S.ConstDestAlgebra :=
|
||||
koszulOrder normalOrderRel q
|
||||
|
||||
lemma constructive_mul_normalOrder (q : index S → Fin 2) (i : FieldAlgebra.index S)
|
||||
(A : S.ConstDestAlgebra) :
|
||||
(FreeAlgebra.ι ℂ ((0, i) : index S) : S.ConstDestAlgebra) * normalOrder q A =
|
||||
normalOrder q ((FreeAlgebra.ι ℂ (0, i) : S.ConstDestAlgebra) * A) := by
|
||||
apply mul_koszulOrder_le
|
||||
intro j
|
||||
simp [normalOrderRel]
|
||||
|
||||
/-- Contraction of constructive and destructive operators, defined as their time
|
||||
ordering minus their normal ordering. -/
|
||||
def contract (q : index S → Fin 2) : S.ConstDestAlgebra →ₗ[ℂ] S.ConstDestAlgebra :=
|
||||
timeOrder q - normalOrder q
|
||||
|
||||
end
|
||||
|
||||
end ConstDestAlgebra
|
||||
|
||||
namespace FieldAlgebra
|
||||
|
||||
variable {S} (𝓞 : WickAlgebra S)
|
||||
|
||||
/-- The inclusion fo the field algebra into the operator algebra. -/
|
||||
def toWickAlgebra : FieldAlgebra S →ₐ[ℂ] 𝓞.A :=
|
||||
FreeAlgebra.lift ℂ (fun i => 𝓞.ψ i.1 i.2)
|
||||
|
||||
@[simp]
|
||||
lemma toWickAlgebra_ι (i : index S) : toWickAlgebra 𝓞 (FreeAlgebra.ι ℂ i) = 𝓞.ψ i.1 i.2 := by
|
||||
simp [toWickAlgebra]
|
||||
|
||||
/-- The time ordering relation in the field algebra. -/
|
||||
def timeOrderRel : index S → index S → Prop := fun x y => y.2 0 ≤ x.2 0
|
||||
|
||||
/-- The time ordering relation in the field algebra is decidable. -/
|
||||
noncomputable instance : DecidableRel (@timeOrderRel S) :=
|
||||
fun a b => Real.decidableLE (b.2 0) (a.2 0)
|
||||
|
||||
/-- The time ordering in the field algebra. -/
|
||||
noncomputable def timeOrder (q : index S → Fin 2) : S.FieldAlgebra →ₗ[ℂ] S.FieldAlgebra :=
|
||||
koszulOrder timeOrderRel q
|
||||
|
||||
/-- Given a list of fields and a map `f` tell us which field is constructive and
|
||||
which is destructive, a list of constructive and destructive fields. -/
|
||||
def listToConstDestList : (l : List (index S)) →
|
||||
(f : Fin l.length → Fin 2) → List (ConstDestAlgebra.index S)
|
||||
| [], _ => []
|
||||
| i :: l, f =>
|
||||
(f ⟨0, Nat.zero_lt_succ l.length⟩, i.1, i.2) :: listToConstDestList l (f ∘ Fin.succ)
|
||||
|
||||
@[simp]
|
||||
lemma listToConstDestList_length (l : List (index S)) (f : Fin l.length → Fin 2) :
|
||||
(listToConstDestList l f).length = l.length := by
|
||||
induction l with
|
||||
| nil => rfl
|
||||
| cons i l ih =>
|
||||
simp only [listToConstDestList, List.length_cons, Fin.zero_eta, Prod.mk.eta, add_left_inj]
|
||||
rw [ih]
|
||||
|
||||
lemma listToConstDestList_insertionSortEquiv (l : List (index S))
|
||||
(f : Fin l.length → Fin 2) :
|
||||
(HepLean.List.insertionSortEquiv ConstDestAlgebra.timeOrderRel (listToConstDestList l f))
|
||||
= (Fin.castOrderIso (by simp)).toEquiv.trans
|
||||
((HepLean.List.insertionSortEquiv timeOrderRel l).trans
|
||||
(Fin.castOrderIso (by simp)).toEquiv) := by
|
||||
induction l with
|
||||
| nil =>
|
||||
simp [listToConstDestList, HepLean.List.insertionSortEquiv]
|
||||
| cons i l ih =>
|
||||
simp only [listToConstDestList, List.length_cons, Fin.zero_eta, List.insertionSort]
|
||||
conv_lhs => simp [HepLean.List.insertionSortEquiv]
|
||||
have h1 (l' : List (ConstDestAlgebra.index S)) :
|
||||
(HepLean.List.insertEquiv ConstDestAlgebra.timeOrderRel (f ⟨0, by simp⟩, i.1, i.2) l') =
|
||||
(Fin.castOrderIso (by simp)).toEquiv.trans
|
||||
((HepLean.List.insertEquiv timeOrderRel (i.1, i.2) (l'.unzip).2).trans
|
||||
(Fin.castOrderIso (by simp [List.orderedInsert_length])).toEquiv) := by
|
||||
induction l' with
|
||||
| nil =>
|
||||
simp only [List.length_cons, Nat.add_zero, Nat.zero_eq, Fin.zero_eta, List.length_singleton,
|
||||
List.orderedInsert, HepLean.List.insertEquiv, Fin.castOrderIso_refl,
|
||||
OrderIso.refl_toEquiv, Equiv.trans_refl]
|
||||
rfl
|
||||
| cons j l' ih' =>
|
||||
by_cases hr : ConstDestAlgebra.timeOrderRel (f ⟨0, by simp⟩, i) j
|
||||
· rw [HepLean.List.insertEquiv_cons_pos]
|
||||
· erw [HepLean.List.insertEquiv_cons_pos]
|
||||
· rfl
|
||||
· exact hr
|
||||
· exact hr
|
||||
· rw [HepLean.List.insertEquiv_cons_neg]
|
||||
· erw [HepLean.List.insertEquiv_cons_neg]
|
||||
· simp only [List.length_cons, Nat.add_zero, Nat.zero_eq, Fin.zero_eta,
|
||||
List.orderedInsert, Prod.mk.eta, Fin.mk_one]
|
||||
erw [ih']
|
||||
ext x
|
||||
simp only [Prod.mk.eta, List.length_cons, Nat.add_zero, Nat.zero_eq, Fin.zero_eta,
|
||||
HepLean.Fin.equivCons_trans, Nat.succ_eq_add_one,
|
||||
HepLean.Fin.equivCons_castOrderIso, Equiv.trans_apply, RelIso.coe_fn_toEquiv,
|
||||
Fin.castOrderIso_apply, Fin.cast_trans, Fin.coe_cast]
|
||||
congr 2
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨1, h⟩ => rfl
|
||||
| ⟨Nat.succ (Nat.succ x), h⟩ => rfl
|
||||
· exact hr
|
||||
· exact hr
|
||||
erw [h1]
|
||||
rw [ih]
|
||||
simp only [HepLean.Fin.equivCons_trans, Nat.succ_eq_add_one,
|
||||
HepLean.Fin.equivCons_castOrderIso, List.length_cons, Nat.add_zero, Nat.zero_eq,
|
||||
Fin.zero_eta]
|
||||
ext x
|
||||
conv_rhs => simp [HepLean.List.insertionSortEquiv]
|
||||
simp only [Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.cast_trans,
|
||||
Fin.coe_cast]
|
||||
have h2' (i : ConstDestAlgebra.index S) (l' : List (ConstDestAlgebra.index S)) :
|
||||
(List.orderedInsert ConstDestAlgebra.timeOrderRel i l').unzip.2 =
|
||||
List.orderedInsert timeOrderRel i.2 l'.unzip.2 := by
|
||||
induction l' with
|
||||
| nil =>
|
||||
simp [HepLean.List.insertEquiv]
|
||||
| cons j l' ih' =>
|
||||
by_cases hij : ConstDestAlgebra.timeOrderRel i j
|
||||
· rw [List.orderedInsert_of_le]
|
||||
· erw [List.orderedInsert_of_le]
|
||||
· simp
|
||||
· exact hij
|
||||
· exact hij
|
||||
· simp only [List.orderedInsert, hij, ↓reduceIte, List.unzip_snd, List.map_cons]
|
||||
have hn : ¬ timeOrderRel i.2 j.2 := hij
|
||||
simp only [hn, ↓reduceIte, List.cons.injEq, true_and]
|
||||
simpa using ih'
|
||||
have h2 (l' : List (ConstDestAlgebra.index S)) :
|
||||
(List.insertionSort ConstDestAlgebra.timeOrderRel l').unzip.2 =
|
||||
List.insertionSort timeOrderRel l'.unzip.2 := by
|
||||
induction l' with
|
||||
| nil =>
|
||||
simp [HepLean.List.insertEquiv]
|
||||
| cons i l' ih' =>
|
||||
simp only [List.insertionSort, List.unzip_snd]
|
||||
simp only [List.unzip_snd] at h2'
|
||||
rw [h2']
|
||||
congr
|
||||
simpa using ih'
|
||||
rw [HepLean.List.insertEquiv_congr _ _ _ (h2 _)]
|
||||
simp only [List.length_cons, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
|
||||
Fin.cast_trans, Fin.coe_cast]
|
||||
have h3 : (List.insertionSort timeOrderRel (listToConstDestList l (f ∘ Fin.succ)).unzip.2) =
|
||||
List.insertionSort timeOrderRel l := by
|
||||
congr
|
||||
have h3' (l : List (index S)) (f : Fin l.length → Fin 2) :
|
||||
(listToConstDestList l (f)).unzip.2 = l := by
|
||||
induction l with
|
||||
| nil => rfl
|
||||
| cons i l ih' =>
|
||||
simp only [listToConstDestList, List.length_cons, Fin.zero_eta, Prod.mk.eta,
|
||||
List.unzip_snd, List.map_cons, List.cons.injEq, true_and]
|
||||
simpa using ih' (f ∘ Fin.succ)
|
||||
rw [h3']
|
||||
rw [HepLean.List.insertEquiv_congr _ _ _ h3]
|
||||
simp only [List.length_cons, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
|
||||
Fin.cast_trans, Fin.cast_eq_self, Fin.coe_cast]
|
||||
rfl
|
||||
|
||||
lemma listToConstDestList_get (l : List (index S)) (f : Fin l.length → Fin 2) :
|
||||
(listToConstDestList l f).get = (fun i => (f i, l.get i)) ∘ Fin.cast (by simp) := by
|
||||
induction l with
|
||||
| nil =>
|
||||
funext i
|
||||
exact Fin.elim0 i
|
||||
| cons i l ih =>
|
||||
simp only [listToConstDestList, List.length_cons, Fin.zero_eta, List.get_eq_getElem]
|
||||
funext x
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨x + 1, h⟩ =>
|
||||
simp only [List.length_cons, List.get_eq_getElem, Prod.mk.eta, List.getElem_cons_succ,
|
||||
Function.comp_apply, Fin.cast_mk]
|
||||
change (listToConstDestList l _).get _ = _
|
||||
rw [ih]
|
||||
simp
|
||||
|
||||
lemma listToConstDestList_timeOrder (l : List (index S)) (f : Fin l.length → Fin 2) :
|
||||
List.insertionSort ConstDestAlgebra.timeOrderRel (listToConstDestList l f) =
|
||||
listToConstDestList (List.insertionSort timeOrderRel l)
|
||||
(f ∘ (HepLean.List.insertionSortEquiv (timeOrderRel) l).symm) := by
|
||||
let l1 := List.insertionSort (ConstDestAlgebra.timeOrderRel) (listToConstDestList l f)
|
||||
let l2 := listToConstDestList (List.insertionSort timeOrderRel l)
|
||||
(f ∘ (HepLean.List.insertionSortEquiv (timeOrderRel) l).symm)
|
||||
change l1 = l2
|
||||
have hlen : l1.length = l2.length := by
|
||||
simp [l1, l2]
|
||||
have hget : l1.get = l2.get ∘ Fin.cast hlen := by
|
||||
rw [← HepLean.List.insertionSortEquiv_get]
|
||||
rw [listToConstDestList_get]
|
||||
rw [listToConstDestList_get]
|
||||
rw [← HepLean.List.insertionSortEquiv_get]
|
||||
funext i
|
||||
simp only [List.get_eq_getElem, Function.comp_apply, Fin.coe_cast, Fin.cast_trans]
|
||||
congr 2
|
||||
· rw [listToConstDestList_insertionSortEquiv]
|
||||
simp
|
||||
· rw [listToConstDestList_insertionSortEquiv]
|
||||
simp
|
||||
apply List.ext_get hlen
|
||||
rw [hget]
|
||||
simp
|
||||
|
||||
lemma listToConstDestList_koszulSignInsert (q : index S → Fin 2) (l : List (index S)) (i : index S)
|
||||
(f : Fin l.length → Fin 2) (a : Fin 2) :
|
||||
koszulSignInsert ConstDestAlgebra.timeOrderRel (fun i => q i.2) (a, i)
|
||||
(listToConstDestList l f) = koszulSignInsert timeOrderRel q i l := by
|
||||
induction l with
|
||||
| nil =>
|
||||
simp [listToConstDestList, koszulSignInsert]
|
||||
| cons j s ih =>
|
||||
simp only [koszulSignInsert, List.length_cons, Fin.zero_eta, Prod.mk.eta, Fin.isValue]
|
||||
by_cases hr : ConstDestAlgebra.timeOrderRel (a, i) (f ⟨0, by simp⟩, j)
|
||||
· rw [if_pos]
|
||||
· rw [if_pos]
|
||||
· exact hr
|
||||
· exact hr
|
||||
· rw [if_neg]
|
||||
· nth_rewrite 2 [if_neg]
|
||||
· rw [ih (f ∘ Fin.succ)]
|
||||
· exact hr
|
||||
· exact hr
|
||||
|
||||
lemma listToConstDestList_koszulSign (q : index S → Fin 2) (l : List (index S))
|
||||
(f : Fin l.length → Fin 2) :
|
||||
koszulSign ConstDestAlgebra.timeOrderRel (fun i => q i.2) (listToConstDestList l f) =
|
||||
koszulSign timeOrderRel q l := by
|
||||
induction l with
|
||||
| nil => rfl
|
||||
| cons i l ih =>
|
||||
simp only [koszulSign, List.length_cons, Fin.zero_eta, Prod.mk.eta]
|
||||
rw [ih]
|
||||
simp only [mul_eq_mul_right_iff]
|
||||
apply Or.inl
|
||||
exact listToConstDestList_koszulSignInsert q l i _ _
|
||||
|
||||
/-- The map from the field algebra to the algebra of constructive and destructive fields. -/
|
||||
def toConstDestAlgebra : FieldAlgebra S →ₐ[ℂ] ConstDestAlgebra S :=
|
||||
FreeAlgebra.lift ℂ (fun i => FreeAlgebra.ι ℂ (0, i) + FreeAlgebra.ι ℂ (1, i))
|
||||
|
||||
@[simp]
|
||||
lemma toConstDestAlgebra_ι (i : index S) : toConstDestAlgebra (FreeAlgebra.ι ℂ i) =
|
||||
FreeAlgebra.ι ℂ (0, i) + FreeAlgebra.ι ℂ (1, i) := by
|
||||
simp [toConstDestAlgebra]
|
||||
|
||||
lemma toConstDestAlgebra_single (x : ℂ) : (l : FreeMonoid (index S)) →
|
||||
toConstDestAlgebra (FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single l x))
|
||||
= ∑ (f : Fin l.length → Fin 2), FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm
|
||||
(MonoidAlgebra.single (listToConstDestList l f) x)
|
||||
| [] => by
|
||||
simp only [MonoidAlgebra.single, FreeMonoid.length, List.length_nil, Finset.univ_unique,
|
||||
listToConstDestList, Finset.sum_const, Finset.card_singleton, one_smul]
|
||||
trans x • 1
|
||||
· trans toConstDestAlgebra (x • 1)
|
||||
· congr
|
||||
simp only [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
|
||||
FreeMonoid.lift, FreeMonoid.prodAux, FreeMonoid.toList, Equiv.coe_fn_mk,
|
||||
AlgEquiv.ofAlgHom_symm_apply, MonoidAlgebra.lift_single, MonoidHom.coe_mk, OneHom.coe_mk]
|
||||
rfl
|
||||
· simp only [toConstDestAlgebra, Fin.isValue, map_smul, map_one]
|
||||
· simp only [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply, FreeMonoid.lift,
|
||||
FreeMonoid.prodAux, FreeMonoid.toList, Equiv.coe_fn_mk, AlgEquiv.ofAlgHom_symm_apply,
|
||||
MonoidAlgebra.lift_single, MonoidHom.coe_mk, OneHom.coe_mk]
|
||||
rfl
|
||||
| i :: l => by
|
||||
simp only [MonoidAlgebra.single, FreeMonoid.length, List.length_cons, listToConstDestList,
|
||||
Fin.zero_eta, Prod.mk.eta]
|
||||
have h1 : FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (Finsupp.single (i :: l) x) =
|
||||
(FreeAlgebra.ι ℂ i) *
|
||||
(FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (Finsupp.single l x)) := by
|
||||
simp only [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
|
||||
AlgEquiv.ofAlgHom_symm_apply, MonoidAlgebra.lift_single, Algebra.mul_smul_comm]
|
||||
congr
|
||||
simp only [FreeMonoid.lift, FreeMonoid.prodAux, FreeMonoid.toList, Equiv.coe_fn_mk,
|
||||
MonoidHom.coe_mk, OneHom.coe_mk]
|
||||
change List.foldl (fun x1 x2 => x1 * x2)
|
||||
(FreeAlgebra.ι ℂ i) (List.map (FreeAlgebra.ι ℂ) l) = _
|
||||
match l with
|
||||
| [] =>
|
||||
simp only [List.map_nil, List.foldl_nil, ne_eq, FreeAlgebra.ι_ne_zero, not_false_eq_true,
|
||||
left_eq_mul₀]
|
||||
rfl
|
||||
| x :: l =>
|
||||
simp only [List.map_cons, List.foldl_cons]
|
||||
change _ = FreeAlgebra.ι ℂ i * List.foldl (fun x1 x2 => x1 * x2) _ _
|
||||
rw [List.foldl_assoc]
|
||||
rw [h1]
|
||||
rw [map_mul]
|
||||
trans ∑ f : Fin (l.length + 1) → Fin 2, (FreeAlgebra.ι ℂ ((f 0, i)) : ConstDestAlgebra S) *
|
||||
(FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm
|
||||
(Finsupp.single (listToConstDestList l (f ∘ Fin.succ)) x) : ConstDestAlgebra S)
|
||||
· rw [← (Fin.consEquiv (n := l.length) (fun _ => Fin 2)).sum_comp
|
||||
(α := FreeAlgebra ℂ (ConstDestAlgebra.index S))]
|
||||
erw [Finset.sum_product]
|
||||
simp only [toConstDestAlgebra_ι, Fin.isValue, Fin.consEquiv_apply, Fin.cons_zero,
|
||||
Fin.sum_univ_two]
|
||||
rw [← Finset.mul_sum, ← Finset.mul_sum]
|
||||
erw [← toConstDestAlgebra_single]
|
||||
rw [add_mul]
|
||||
· congr
|
||||
funext f
|
||||
simp only [FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
|
||||
AlgEquiv.ofAlgHom_symm_apply, MonoidAlgebra.lift_single, Algebra.mul_smul_comm]
|
||||
congr
|
||||
simp only [FreeMonoid.lift, FreeMonoid.prodAux, FreeMonoid.toList, Equiv.coe_fn_mk,
|
||||
MonoidHom.coe_mk, OneHom.coe_mk]
|
||||
match l with
|
||||
| [] =>
|
||||
simp only [listToConstDestList]
|
||||
change FreeAlgebra.ι ℂ (f 0, i) * 1 = _
|
||||
simp only [mul_one]
|
||||
rfl
|
||||
| x :: l =>
|
||||
simp only [listToConstDestList, List.length_cons, Fin.zero_eta, Function.comp_apply,
|
||||
Fin.succ_zero_eq_one, Prod.mk.eta]
|
||||
change FreeAlgebra.ι ℂ (f 0, i) * List.foldl _ _ _ = List.foldl _ _ _
|
||||
simp only [List.map_cons, List.foldl_cons]
|
||||
haveI : Std.Associative fun
|
||||
(x1 x2 : FreeAlgebra ℂ (ConstDestAlgebra.index S)) => x1 * x2 := by
|
||||
exact Semigroup.to_isAssociative
|
||||
refine Eq.symm List.foldl_assoc
|
||||
|
||||
lemma toWickAlgebra_factor_toConstDestAlgebra :
|
||||
toWickAlgebra 𝓞 = (ConstDestAlgebra.toWickAlgebra 𝓞).comp toConstDestAlgebra := by
|
||||
refine FreeAlgebra.hom_ext ?_
|
||||
funext i
|
||||
simp only [Function.comp_apply, toWickAlgebra_ι, ConstDestAlgebra.toWickAlgebra, AlgHom.coe_comp,
|
||||
toConstDestAlgebra_ι, Fin.isValue, map_add, FreeAlgebra.lift_ι_apply]
|
||||
split
|
||||
rename_i x i_1 f x_1 heq
|
||||
simp_all only [Fin.isValue, Prod.mk.injEq]
|
||||
obtain ⟨left, right⟩ := heq
|
||||
subst left right
|
||||
exact Eq.symm (𝓞.ψc_ψd f x_1)
|
||||
|
||||
/-- Time ordering fields and then mapping to constructive and destructive fields is the same as
|
||||
mapping to constructive and destructive fields and then time ordering. -/
|
||||
lemma timeOrder_comm_toConstDestAlgebra (q : index S → Fin 2) :
|
||||
(ConstDestAlgebra.timeOrder (fun i => q i.2)).comp toConstDestAlgebra.toLinearMap =
|
||||
toConstDestAlgebra.toLinearMap.comp (timeOrder q) := by
|
||||
let e : S.FieldAlgebra ≃ₗ[ℂ] MonoidAlgebra ℂ (FreeMonoid (index S)) :=
|
||||
FreeAlgebra.equivMonoidAlgebraFreeMonoid.toLinearEquiv
|
||||
apply (LinearEquiv.eq_comp_toLinearMap_iff (e₁₂ := e.symm) _ _).mp
|
||||
apply MonoidAlgebra.lhom_ext'
|
||||
intro l
|
||||
apply LinearMap.ext
|
||||
intro x
|
||||
simp only [AlgEquiv.toLinearEquiv_symm, AlgEquiv.toLinearEquiv_toLinearMap, LinearMap.coe_comp,
|
||||
Function.comp_apply, MonoidAlgebra.lsingle_apply, AlgEquiv.toLinearMap_apply,
|
||||
AlgHom.toLinearMap_apply, toConstDestAlgebra_single, map_sum, timeOrder, koszulOrder_single, e]
|
||||
simp only [FreeMonoid.length]
|
||||
let ew := Equiv.piCongrLeft' (fun _ => Fin 2)
|
||||
(HepLean.List.insertionSortEquiv (timeOrderRel) l)
|
||||
rw [← ew.sum_comp (α := FreeAlgebra ℂ (ConstDestAlgebra.index S))]
|
||||
congr
|
||||
funext f
|
||||
simp only [ConstDestAlgebra.timeOrder, koszulOrder_single, EmbeddingLike.apply_eq_iff_eq]
|
||||
congr 1
|
||||
· rw [listToConstDestList_timeOrder]
|
||||
simp only [ew]
|
||||
rfl
|
||||
· simp only [mul_eq_mul_right_iff]
|
||||
exact Or.inl (listToConstDestList_koszulSign q l f)
|
||||
|
||||
/-- The contraction of fields defined as the time order minus normal order once mapped down
|
||||
to constructive and destructive fields. -/
|
||||
noncomputable def contract (q : index S → Fin 2) : FieldAlgebra S →ₗ[ℂ] ConstDestAlgebra S :=
|
||||
ConstDestAlgebra.contract (fun i => q i.2) ∘ₗ toConstDestAlgebra.toLinearMap
|
||||
|
||||
lemma contract_timeOrderRel (q : index S → Fin 2) {i j : index S} (h : timeOrderRel i j) :
|
||||
contract q (FreeAlgebra.ι ℂ i * FreeAlgebra.ι ℂ j) =
|
||||
superCommute (fun i => q i.2) (FreeAlgebra.ι ℂ (1, i)) (FreeAlgebra.ι ℂ (0, j)) := by
|
||||
simp only [contract, LinearMap.coe_comp, Function.comp_apply, AlgHom.toLinearMap_apply, map_mul,
|
||||
toConstDestAlgebra_ι, Fin.isValue]
|
||||
trans (ConstDestAlgebra.contract fun i => q i.2)
|
||||
(FreeAlgebra.ι ℂ (0, i) * FreeAlgebra.ι ℂ (0, j)
|
||||
+ FreeAlgebra.ι ℂ (0, i) * FreeAlgebra.ι ℂ (1, j)
|
||||
+ FreeAlgebra.ι ℂ (1, i) * FreeAlgebra.ι ℂ (0, j)
|
||||
+ FreeAlgebra.ι ℂ (1, i) * FreeAlgebra.ι ℂ (1, j))
|
||||
· congr
|
||||
simp [mul_add, add_mul]
|
||||
abel
|
||||
simp only [ConstDestAlgebra.contract, ConstDestAlgebra.timeOrder, ConstDestAlgebra.normalOrder,
|
||||
Fin.isValue, map_add, LinearMap.sub_apply, koszulOrder_ι_pair, ConstDestAlgebra.normalOrderRel,
|
||||
le_refl, ↓reduceIte, Fin.zero_le, Fin.le_zero_iff, Nat.reduceAdd, one_ne_zero]
|
||||
have h1 : ConstDestAlgebra.timeOrderRel (0, i) (0, j) := h
|
||||
rw [if_pos h1]
|
||||
repeat rw [if_pos]
|
||||
abel_nf
|
||||
simp [koszulSign, koszulSignInsert , ConstDestAlgebra.normalOrderRel]
|
||||
· exact h1
|
||||
· exact h1
|
||||
· exact h1
|
||||
|
||||
lemma contract_not_timeOrderRel (q : index S → Fin 2) {i j : index S} (h : ¬ timeOrderRel i j) :
|
||||
contract q (FreeAlgebra.ι ℂ i * FreeAlgebra.ι ℂ j) = -
|
||||
(superCommute (fun i => q i.2) (FreeAlgebra.ι ℂ (0, i)) (FreeAlgebra.ι ℂ (0, j)) +
|
||||
superCommute (fun i => q i.2) (FreeAlgebra.ι ℂ (1, i)) (FreeAlgebra.ι ℂ (1, j)) +
|
||||
superCommute (fun i => q i.2) (FreeAlgebra.ι ℂ (0, i)) (FreeAlgebra.ι ℂ (1, j))) := by
|
||||
simp [contract]
|
||||
trans (ConstDestAlgebra.contract fun i => q i.2)
|
||||
(FreeAlgebra.ι ℂ (0, i) * FreeAlgebra.ι ℂ (0, j)
|
||||
+ FreeAlgebra.ι ℂ (0, i) * FreeAlgebra.ι ℂ (1, j)
|
||||
+ FreeAlgebra.ι ℂ (1, i) * FreeAlgebra.ι ℂ (0, j)
|
||||
+ FreeAlgebra.ι ℂ (1, i) * FreeAlgebra.ι ℂ (1, j))
|
||||
· congr
|
||||
simp [mul_add, add_mul]
|
||||
abel
|
||||
simp [ConstDestAlgebra.contract, ConstDestAlgebra.timeOrder,
|
||||
ConstDestAlgebra.normalOrder, ConstDestAlgebra.normalOrderRel, ConstDestAlgebra.normalOrderRel]
|
||||
rw [if_neg, if_neg, if_neg, if_neg]
|
||||
simp [koszulSign, koszulSignInsert , ConstDestAlgebra.normalOrderRel]
|
||||
rw [if_neg]
|
||||
nth_rewrite 2 [if_neg]
|
||||
nth_rewrite 3 [if_neg]
|
||||
nth_rewrite 4 [if_neg]
|
||||
by_cases hq : q i = 1 ∧ q j = 1
|
||||
· simp [hq, superCommute]
|
||||
abel
|
||||
· simp [hq, superCommute]
|
||||
abel
|
||||
· exact h
|
||||
· exact h
|
||||
· exact h
|
||||
· exact h
|
||||
· exact h
|
||||
· exact h
|
||||
· exact h
|
||||
· exact h
|
||||
|
||||
end FieldAlgebra
|
||||
|
||||
end Species
|
||||
|
||||
informal_definition asymptoicContract where
|
||||
math :≈ "Given two `i j : S.𝓯 × SpaceTime`, the super-commutator [φd(i), ψ(j)]."
|
||||
ref :≈ "See e.g. http://www.dylanjtemples.com:82/solutions/QFT_Solution_I-6.pdf"
|
||||
|
||||
informal_definition contractAsymptotic where
|
||||
math :≈ "Given two `i j : S.𝓯 × SpaceTime`, the super-commutator [ψ(i), φc(j)]."
|
||||
|
||||
informal_definition asymptoicContractAsymptotic where
|
||||
math :≈ "Given two `i j : S.𝓯 × SpaceTime`, the super-commutator
|
||||
[φd(i), φc(j)]."
|
||||
|
||||
informal_lemma contraction_in_center where
|
||||
math :≈ "The contraction of two fields is in the center of the algebra."
|
||||
deps :≈ [``WickAlgebra]
|
||||
|
||||
informal_lemma contraction_non_dual_is_zero where
|
||||
math :≈ "The contraction of two fields is zero if the fields are not dual to each other."
|
||||
deps :≈ [``WickAlgebra]
|
||||
|
||||
informal_lemma timeOrder_single where
|
||||
math :≈ "The time ordering of a single field is the normal ordering of that field."
|
||||
proof :≈ "Follows from the definitions."
|
||||
deps :≈ [``WickAlgebra]
|
||||
|
||||
informal_lemma timeOrder_pair where
|
||||
math :≈ "The time ordering of two fields is the normal ordering of the fields plus the
|
||||
contraction of the fields."
|
||||
proof :≈ "Follows from the definition of contraction."
|
||||
deps :≈ [``WickAlgebra]
|
||||
|
||||
informal_definition WickMap where
|
||||
math :≈ "A linear map `vev` from the Wick algebra `A` to the underlying field such that
|
||||
`vev(...ψd(t)) = 0` and `vev(ψc(t)...) = 0`."
|
||||
physics :≈ "An abstraction of the notion of a vacuum expectation value, containing
|
||||
the necessary properties for lots of theorems to hold."
|
||||
deps :≈ [``WickAlgebra]
|
||||
|
||||
informal_lemma normalOrder_wickMap where
|
||||
math :≈ "Any normal ordering maps to zero under a Wick map."
|
||||
deps :≈ [``WickMap]
|
||||
|
||||
end Wick
|
|
@ -1,726 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.String
|
||||
import Mathlib.Algebra.Order.Ring.Nat
|
||||
import Mathlib.Data.Fintype.Sum
|
||||
import Mathlib.Logic.Equiv.Fin
|
||||
import HepLean.Meta.Notes.Basic
|
||||
import HepLean.Mathematics.Fin
|
||||
/-!
|
||||
|
||||
# Wick Contract
|
||||
|
||||
## Further reading
|
||||
|
||||
- https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/theoretical-physics/msc/current/qft/handouts/qftwickstheorem.pdf
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
variable {S : Species}
|
||||
|
||||
note r"
|
||||
<h2>Wick Contractions</h2>
|
||||
"
|
||||
/-- A Wick contraction for a Wick string is a series of pairs `i` and `j` of indices
|
||||
to be contracted, subject to ordering and subject to the condition that they can
|
||||
be contracted. -/
|
||||
|
||||
inductive PreContract {α : Type} : (l : List α) → Type where
|
||||
| nil : PreContract []
|
||||
| cons (φ : α) {l : List α} (i : Option (Fin l.length)) (p : PreContract l) : PreContract (φ :: l)
|
||||
|
||||
namespace PreContract
|
||||
|
||||
def example1 : PreContract [0, 1, 2, 3] :=
|
||||
cons 0 none (cons 1 none (cons 2 (some ⟨0,Nat.zero_lt_succ [].length⟩) (cons 3 none nil)))
|
||||
|
||||
def nonContracted {α : Type} : {l : List α} → PreContract l → List α := fun
|
||||
| nil => []
|
||||
| cons φ none p => φ :: p.nonContracted
|
||||
| cons _ (some _) p => p.nonContracted
|
||||
|
||||
def remove {α : Type} : {l : List α} → PreContract l → (i : Fin l.length) → PreContract (List.eraseIdx l i) := fun
|
||||
| nil, i => Fin.elim0 i
|
||||
| cons φ none p, ⟨0, h⟩ => p
|
||||
| cons φ none p, ⟨i + 1, h⟩ => cons φ none (p.remove ⟨i,Nat.succ_lt_succ_iff.mp h⟩)
|
||||
| cons φ (some i) p, ⟨0, h⟩ => p
|
||||
| cons (l := a :: b :: l) φ (some i) p, ⟨j + 1, h⟩ =>
|
||||
if ⟨j, Nat.succ_lt_succ_iff.mp h⟩ = i then
|
||||
cons φ none (p.remove ⟨j, Nat.succ_lt_succ_iff.mp h⟩)
|
||||
else
|
||||
cons φ (some (Fin.cast (by
|
||||
simp [List.length_eraseIdx, h]
|
||||
rw [if_pos]
|
||||
simpa using h) (HepLean.Fin.predAboveI ⟨j, Nat.succ_lt_succ_iff.mp h⟩ i ))) (p.remove ⟨j, Nat.succ_lt_succ_iff.mp h⟩)
|
||||
| cons (l := b ::[ ]) φ (some i) p, ⟨j + 1, h⟩ => cons φ none (p.remove ⟨j, Nat.succ_lt_succ_iff.mp h⟩)
|
||||
|
||||
@[nolint unusedArguments]
|
||||
def length {l : List α} (_ : PreContract l) : ℕ := l.length
|
||||
|
||||
def dual : {l : List α} → PreContract l → List (Option (Fin l.length)) := fun
|
||||
| nil => []
|
||||
| cons (l := l) _ none p => none :: List.map (Option.map Fin.succ) p.dual
|
||||
| cons (l := l) _ (some i) p => some (Fin.succ i) ::
|
||||
List.set (List.map (Option.map (Fin.succ)) p.dual) i (some ⟨0, Nat.zero_lt_succ l.length⟩)
|
||||
|
||||
lemma dual_length : {l : List α} → (p : PreContract l) → p.dual.length = l.length := fun
|
||||
| nil => rfl
|
||||
| cons _ none p => by
|
||||
simp [dual, length, dual_length p]
|
||||
| cons _ (some _) p => by simp [dual, dual_length p]
|
||||
|
||||
def HasUniqueContr : {l : List α} → PreContract l → Bool
|
||||
| _, nil => True
|
||||
| _, cons _ none p => HasUniqueContr p
|
||||
| _, cons _ (some i) p => p.dual.get ⟨i, by rw [dual_length]; exact i.isLt⟩ = none ∧ HasUniqueContr p
|
||||
|
||||
#eval HasUniqueContr example1
|
||||
|
||||
|
||||
@[nolint unusedArguments]
|
||||
def consDual (φ : α) {l : List α} (p : PreContract l) (i : Option (Fin l.length))
|
||||
(_ : (Option.map (dual p) i).isNone) : PreContract (φ :: l) := cons φ p i
|
||||
|
||||
|
||||
end PreContract
|
||||
|
||||
inductive WickContract : {ni : ℕ} → {i : Fin ni → S.𝓯} → {n : ℕ} → {c : Fin n → S.𝓯} →
|
||||
{no : ℕ} → {o : Fin no → S.𝓯} →
|
||||
(str : WickString i c o final) →
|
||||
{k : ℕ} → (b1 : Fin k → Fin n) → (b2 : Fin k → Fin n) → Type where
|
||||
| string {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯}
|
||||
{str : WickString i c o final} : WickContract str Fin.elim0 Fin.elim0
|
||||
| contr {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final} {k : ℕ}
|
||||
{b1 : Fin k → Fin n} {b2 : Fin k → Fin n} : (i : Fin n) →
|
||||
(j : Fin n) → (h : c j = S.ξ (c i)) →
|
||||
(hilej : i < j) → (hb1 : ∀ r, b1 r < i) → (hb2i : ∀ r, b2 r ≠ i) → (hb2j : ∀ r, b2 r ≠ j) →
|
||||
(w : WickContract str b1 b2) →
|
||||
WickContract str (Fin.snoc b1 i) (Fin.snoc b2 j)
|
||||
|
||||
namespace WickContract
|
||||
|
||||
/-- The number of nodes of a Wick contraction. -/
|
||||
def size {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final} {k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
WickContract str b1 b2 → ℕ := fun
|
||||
| string => 0
|
||||
| contr _ _ _ _ _ _ _ w => w.size + 1
|
||||
|
||||
/-- The number of nodes in a wick contraction tree is the same as `k`. -/
|
||||
lemma size_eq_k {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final} {k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract str b1 b2) → w.size = k := fun
|
||||
| string => rfl
|
||||
| contr _ _ _ _ _ _ _ w => by
|
||||
simpa [size] using w.size_eq_k
|
||||
|
||||
/-- The map giving the vertices on the left-hand-side of a contraction. -/
|
||||
@[nolint unusedArguments]
|
||||
def boundFst {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
WickContract str b1 b2 → Fin k → Fin n := fun _ => b1
|
||||
|
||||
@[simp]
|
||||
lemma boundFst_contr_castSucc {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = S.ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str b1 b2) (r : Fin k) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundFst r.castSucc = w.boundFst r := by
|
||||
simp only [boundFst, Fin.snoc_castSucc]
|
||||
|
||||
@[simp]
|
||||
lemma boundFst_contr_last {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = S.ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str b1 b2) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundFst (Fin.last k) = i := by
|
||||
simp only [boundFst, Fin.snoc_last]
|
||||
|
||||
lemma boundFst_strictMono {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} : (w : WickContract str b1 b2) → StrictMono w.boundFst := fun
|
||||
| string => fun k => Fin.elim0 k
|
||||
| contr i j _ _ hb1 _ _ w => by
|
||||
intro r s hrs
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
simp only [boundFst_contr_castSucc]
|
||||
apply w.boundFst_strictMono _
|
||||
simpa using hrs
|
||||
· subst hs
|
||||
simp only [boundFst_contr_castSucc, boundFst_contr_last]
|
||||
exact hb1 r
|
||||
· subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
rw [Fin.lt_def] at hrs
|
||||
simp only [Fin.val_last, Fin.coe_castSucc] at hrs
|
||||
omega
|
||||
· subst hs
|
||||
simp at hrs
|
||||
|
||||
/-- The map giving the vertices on the right-hand-side of a contraction. -/
|
||||
@[nolint unusedArguments]
|
||||
def boundSnd {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
WickContract str b1 b2 → Fin k → Fin n := fun _ => b2
|
||||
|
||||
@[simp]
|
||||
lemma boundSnd_contr_castSucc {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = S.ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str b1 b2) (r : Fin k) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundSnd r.castSucc = w.boundSnd r := by
|
||||
simp only [boundSnd, Fin.snoc_castSucc]
|
||||
|
||||
@[simp]
|
||||
lemma boundSnd_contr_last {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (i j : Fin n)
|
||||
(h : c j = S.ξ (c i))
|
||||
(hilej : i < j)
|
||||
(hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i)
|
||||
(hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str b1 b2) :
|
||||
(contr i j h hilej hb1 hb2i hb2j w).boundSnd (Fin.last k) = j := by
|
||||
simp only [boundSnd, Fin.snoc_last]
|
||||
|
||||
lemma boundSnd_injective {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract str b1 b2) → Function.Injective w.boundSnd := fun
|
||||
| string => by
|
||||
intro i j _
|
||||
exact Fin.elim0 i
|
||||
| contr i j hij hilej hi h2i h2j w => by
|
||||
intro r s hrs
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
simp only [boundSnd_contr_castSucc] at hrs
|
||||
simpa using w.boundSnd_injective hrs
|
||||
· subst hs
|
||||
simp only [boundSnd_contr_castSucc, boundSnd_contr_last] at hrs
|
||||
exact False.elim (h2j r hrs)
|
||||
· subst hr
|
||||
rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hs
|
||||
simp only [boundSnd_contr_last, boundSnd_contr_castSucc] at hrs
|
||||
exact False.elim (h2j s hrs.symm)
|
||||
· subst hs
|
||||
rfl
|
||||
|
||||
lemma color_boundSnd_eq_dual_boundFst {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract str b1 b2) → (i : Fin k) → c (w.boundSnd i) = S.ξ (c (w.boundFst i)) := fun
|
||||
| string => fun i => Fin.elim0 i
|
||||
| contr i j hij hilej hi _ _ w => fun r => by
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
simpa using w.color_boundSnd_eq_dual_boundFst r
|
||||
· subst hr
|
||||
simpa using hij
|
||||
|
||||
lemma boundFst_lt_boundSnd {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} : (w : WickContract str b1 b2) → (i : Fin k) →
|
||||
w.boundFst i < w.boundSnd i := fun
|
||||
| string => fun i => Fin.elim0 i
|
||||
| contr i j hij hilej hi _ _ w => fun r => by
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr
|
||||
simpa using w.boundFst_lt_boundSnd r
|
||||
· subst hr
|
||||
simp only [boundFst_contr_last, boundSnd_contr_last]
|
||||
exact hilej
|
||||
|
||||
lemma boundFst_neq_boundSnd {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
(w : WickContract str b1 b2) → (r1 r2 : Fin k) → b1 r1 ≠ b2 r2 := fun
|
||||
| string => fun i => Fin.elim0 i
|
||||
| contr i j _ hilej h1 h2i h2j w => fun r s => by
|
||||
rcases Fin.eq_castSucc_or_eq_last r with hr | hr
|
||||
<;> rcases Fin.eq_castSucc_or_eq_last s with hs | hs
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
obtain ⟨s, hs⟩ := hs
|
||||
subst hr hs
|
||||
simpa using w.boundFst_neq_boundSnd r s
|
||||
· obtain ⟨r, hr⟩ := hr
|
||||
subst hr hs
|
||||
simp only [Fin.snoc_castSucc, Fin.snoc_last, ne_eq]
|
||||
have hn := h1 r
|
||||
omega
|
||||
· obtain ⟨s, hs⟩ := hs
|
||||
subst hr hs
|
||||
simp only [Fin.snoc_last, Fin.snoc_castSucc, ne_eq]
|
||||
exact (h2i s).symm
|
||||
· subst hr hs
|
||||
simp only [Fin.snoc_last, ne_eq]
|
||||
omega
|
||||
|
||||
/-- Casts a Wick contraction from `WickContract str b1 b2` to `WickContract str b1' b2'` with a
|
||||
proof that `b1 = b1'` and `b2 = b2'`, and that they are defined from the same `k = k'`. -/
|
||||
def castMaps {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k k' : ℕ} {b1 b2 : Fin k → Fin n} {b1' b2' : Fin k' → Fin n}
|
||||
(hk : k = k')
|
||||
(hb1 : b1 = b1' ∘ Fin.cast hk) (hb2 : b2 = b2' ∘ Fin.cast hk) (w : WickContract str b1 b2) :
|
||||
WickContract str b1' b2' :=
|
||||
cast (by subst hk; rfl) (hb2 ▸ hb1 ▸ w)
|
||||
|
||||
@[simp]
|
||||
lemma castMaps_rfl {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
|
||||
castMaps rfl rfl rfl w = w := rfl
|
||||
|
||||
lemma mem_snoc' {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1' b2' : Fin k → Fin n} :
|
||||
(w : WickContract str b1' b2') →
|
||||
{k' : ℕ} → (hk' : k'.succ = k) →
|
||||
(b1 b2 : Fin k' → Fin n) → (i j : Fin n) → (h : c j = S.ξ (c i)) →
|
||||
(hilej : i < j) → (hb1 : ∀ r, b1 r < i) → (hb2i : ∀ r, b2 r ≠ i) → (hb2j : ∀ r, b2 r ≠ j) →
|
||||
(hb1' : Fin.snoc b1 i = b1' ∘ Fin.cast hk') →
|
||||
(hb2' : Fin.snoc b2 j = b2' ∘ Fin.cast hk') →
|
||||
∃ (w' : WickContract str b1 b2), w = castMaps hk' hb1' hb2'
|
||||
(contr i j h hilej hb1 hb2i hb2j w') := fun
|
||||
| string => fun hk' => by
|
||||
simp at hk'
|
||||
| contr i' j' h' hilej' hb1' hb2i' hb2j' w' => by
|
||||
intro hk b1 b2 i j h hilej hb1 hb2i hb2j hb1' hb2'
|
||||
rename_i k' k b1' b2' f
|
||||
have hk2 : k' = k := Nat.succ_inj'.mp hk
|
||||
subst hk2
|
||||
simp_all
|
||||
have hb2'' : b2 = b2' := by
|
||||
funext k
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b2 j) (Fin.castSucc k)
|
||||
· simp
|
||||
· rw [hb2']
|
||||
simp
|
||||
have hb1'' : b1 = b1' := by
|
||||
funext k
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b1 i) (Fin.castSucc k)
|
||||
· simp
|
||||
· rw [hb1']
|
||||
simp
|
||||
have hi : i = i' := by
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b1 i) (Fin.last k')
|
||||
· simp
|
||||
· rw [hb1']
|
||||
simp
|
||||
have hj : j = j' := by
|
||||
trans (@Fin.snoc k' (fun _ => Fin n) b2 j) (Fin.last k')
|
||||
· simp
|
||||
· rw [hb2']
|
||||
simp
|
||||
subst hb1'' hb2'' hi hj
|
||||
simp
|
||||
|
||||
lemma mem_snoc {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(i j : Fin n) (h : c j = S.ξ (c i)) (hilej : i < j) (hb1 : ∀ r, b1 r < i)
|
||||
(hb2i : ∀ r, b2 r ≠ i) (hb2j : ∀ r, b2 r ≠ j)
|
||||
(w : WickContract str (Fin.snoc b1 i) (Fin.snoc b2 j)) :
|
||||
∃ (w' : WickContract str b1 b2), w = contr i j h hilej hb1 hb2i hb2j w' := by
|
||||
exact mem_snoc' w rfl b1 b2 i j h hilej hb1 hb2i hb2j rfl rfl
|
||||
|
||||
lemma is_subsingleton {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} :
|
||||
Subsingleton (WickContract str b1 b2) := Subsingleton.intro fun w1 w2 => by
|
||||
induction k with
|
||||
| zero =>
|
||||
have hb1 : b1 = Fin.elim0 := Subsingleton.elim _ _
|
||||
have hb2 : b2 = Fin.elim0 := Subsingleton.elim _ _
|
||||
subst hb1 hb2
|
||||
match w1, w2 with
|
||||
| string, string => rfl
|
||||
| succ k hI =>
|
||||
match w1, w2 with
|
||||
| contr i j h hilej hb1 hb2i hb2j w, w2 =>
|
||||
let ⟨w', hw'⟩ := mem_snoc i j h hilej hb1 hb2i hb2j w2
|
||||
rw [hw']
|
||||
apply congrArg (contr i j _ _ _ _ _) (hI w w')
|
||||
|
||||
lemma eq_snoc_castSucc {k n : ℕ} (b1 : Fin k.succ → Fin n) :
|
||||
b1 = Fin.snoc (b1 ∘ Fin.castSucc) (b1 (Fin.last k)) := by
|
||||
funext i
|
||||
rcases Fin.eq_castSucc_or_eq_last i with h1 | h1
|
||||
· obtain ⟨i, rfl⟩ := h1
|
||||
simp
|
||||
· subst h1
|
||||
simp
|
||||
|
||||
/-- The construction of a Wick contraction from maps `b1 b2 : Fin k → Fin n`, with the former
|
||||
giving the first index to be contracted, and the latter the second index. These
|
||||
maps must satisfy a series of conditions. -/
|
||||
def fromMaps {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} (b1 b2 : Fin k → Fin n)
|
||||
(hi : ∀ i, c (b2 i) = S.ξ (c (b1 i)))
|
||||
(hb1ltb2 : ∀ i, b1 i < b2 i)
|
||||
(hb1 : StrictMono b1)
|
||||
(hb1neb2 : ∀ r1 r2, b1 r1 ≠ b2 r2)
|
||||
(hb2 : Function.Injective b2) :
|
||||
WickContract str b1 b2 := by
|
||||
match k with
|
||||
| 0 =>
|
||||
refine castMaps ?_ ?_ ?_ string
|
||||
· rfl
|
||||
· exact funext (fun i => Fin.elim0 i)
|
||||
· exact funext (fun i => Fin.elim0 i)
|
||||
| Nat.succ k =>
|
||||
refine castMaps rfl (eq_snoc_castSucc b1).symm (eq_snoc_castSucc b2).symm
|
||||
(contr (b1 (Fin.last k)) (b2 (Fin.last k))
|
||||
(hi (Fin.last k))
|
||||
(hb1ltb2 (Fin.last k))
|
||||
(fun r => hb1 (Fin.castSucc_lt_last r))
|
||||
(fun r a => hb1neb2 (Fin.last k) r.castSucc a.symm)
|
||||
(fun r => hb2.eq_iff.mp.mt (Fin.ne_last_of_lt (Fin.castSucc_lt_last r)))
|
||||
(fromMaps (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc) (fun i => hi (Fin.castSucc i))
|
||||
(fun i => hb1ltb2 (Fin.castSucc i)) (StrictMono.comp hb1 Fin.strictMono_castSucc)
|
||||
?_ ?_))
|
||||
· exact fun r1 r2 => hb1neb2 r1.castSucc r2.castSucc
|
||||
· exact Function.Injective.comp hb2 (Fin.castSucc_injective k)
|
||||
|
||||
/-- Given a Wick contraction with `k.succ` contractions, returns the Wick contraction with
|
||||
`k` contractions by dropping the last contraction (defined by the first index contracted). -/
|
||||
def dropLast {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k.succ → Fin n}
|
||||
(w : WickContract str b1 b2) : WickContract str (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc) :=
|
||||
fromMaps (b1 ∘ Fin.castSucc) (b2 ∘ Fin.castSucc)
|
||||
(fun i => color_boundSnd_eq_dual_boundFst w i.castSucc)
|
||||
(fun i => boundFst_lt_boundSnd w i.castSucc)
|
||||
(StrictMono.comp w.boundFst_strictMono Fin.strictMono_castSucc)
|
||||
(fun r1 r2 => boundFst_neq_boundSnd w r1.castSucc r2.castSucc)
|
||||
(Function.Injective.comp w.boundSnd_injective (Fin.castSucc_injective k))
|
||||
|
||||
lemma eq_from_maps {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) :
|
||||
w = fromMaps w.boundFst w.boundSnd w.color_boundSnd_eq_dual_boundFst
|
||||
w.boundFst_lt_boundSnd w.boundFst_strictMono w.boundFst_neq_boundSnd
|
||||
w.boundSnd_injective := is_subsingleton.allEq w _
|
||||
|
||||
lemma eq_dropLast_contr {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k.succ → Fin n} (w : WickContract str b1 b2) :
|
||||
w = castMaps rfl (eq_snoc_castSucc b1).symm (eq_snoc_castSucc b2).symm
|
||||
(contr (b1 (Fin.last k)) (b2 (Fin.last k))
|
||||
(w.color_boundSnd_eq_dual_boundFst (Fin.last k))
|
||||
(w.boundFst_lt_boundSnd (Fin.last k))
|
||||
(fun r => w.boundFst_strictMono (Fin.castSucc_lt_last r))
|
||||
(fun r a => w.boundFst_neq_boundSnd (Fin.last k) r.castSucc a.symm)
|
||||
(fun r => w.boundSnd_injective.eq_iff.mp.mt (Fin.ne_last_of_lt (Fin.castSucc_lt_last r)))
|
||||
(dropLast w)) := by
|
||||
rw [eq_from_maps w]
|
||||
rfl
|
||||
|
||||
/-- Wick contractions of a given Wick string with `k` different contractions. -/
|
||||
def Level {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} (str : WickString i c o final) (k : ℕ) : Type :=
|
||||
Σ (b1 : Fin k → Fin n) (b2 : Fin k → Fin n), WickContract str b1 b2
|
||||
|
||||
/-- There is a finite number of Wick contractions with no contractions. In particular,
|
||||
this is just the original Wick string. -/
|
||||
instance levelZeroFintype {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} (str : WickString i c o final) :
|
||||
Fintype (Level str 0) where
|
||||
elems := {⟨Fin.elim0, Fin.elim0, WickContract.string⟩}
|
||||
complete := by
|
||||
intro x
|
||||
match x with
|
||||
| ⟨b1, b2, w⟩ =>
|
||||
have hb1 : b1 = Fin.elim0 := Subsingleton.elim _ _
|
||||
have hb2 : b2 = Fin.elim0 := Subsingleton.elim _ _
|
||||
subst hb1 hb2
|
||||
simp only [Finset.mem_singleton]
|
||||
rw [is_subsingleton.allEq w string]
|
||||
|
||||
/-- The pairs of additional indices which can be contracted given a Wick contraction. -/
|
||||
structure ContrPair {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) where
|
||||
/-- The first index in the contraction pair. -/
|
||||
i : Fin n
|
||||
/-- The second index in the contraction pair. -/
|
||||
j : Fin n
|
||||
h : c j = S.ξ (c i)
|
||||
hilej : i < j
|
||||
hb1 : ∀ r, b1 r < i
|
||||
hb2i : ∀ r, b2 r ≠ i
|
||||
hb2j : ∀ r, b2 r ≠ j
|
||||
|
||||
/-- The pairs of additional indices which can be contracted, given an existing wick contraction,
|
||||
is equivalent to the a subtype of `Fin n × Fin n` defined by certain conditions equivalent
|
||||
to the conditions appearing in `ContrPair`. -/
|
||||
def contrPairEquivSubtype {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
|
||||
ContrPair w ≃ {x : Fin n × Fin n // c x.2 = S.ξ (c x.1) ∧ x.1 < x.2 ∧
|
||||
(∀ r, b1 r < x.1) ∧ (∀ r, b2 r ≠ x.1) ∧ (∀ r, b2 r ≠ x.2)} where
|
||||
toFun cp := ⟨⟨cp.i, cp.j⟩, ⟨cp.h, cp.hilej, cp.hb1, cp.hb2i, cp.hb2j⟩⟩
|
||||
invFun x :=
|
||||
match x with
|
||||
| ⟨⟨i, j⟩, ⟨h, hilej, hb1, hb2i, hb2j⟩⟩ => ⟨i, j, h, hilej, hb1, hb2i, hb2j⟩
|
||||
left_inv x := by rfl
|
||||
right_inv x := by
|
||||
simp_all only [ne_eq]
|
||||
obtain ⟨val, property⟩ := x
|
||||
obtain ⟨fst, snd⟩ := val
|
||||
obtain ⟨left, right⟩ := property
|
||||
obtain ⟨left_1, right⟩ := right
|
||||
obtain ⟨left_2, right⟩ := right
|
||||
obtain ⟨left_3, right⟩ := right
|
||||
simp_all only [ne_eq]
|
||||
|
||||
lemma heq_eq {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 b1' b2' : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2)
|
||||
(w' : WickContract str b1' b2') (h1 : b1 = b1') (h2 : b2 = b2') : HEq w w':= by
|
||||
subst h1 h2
|
||||
simp only [heq_eq_eq]
|
||||
exact is_subsingleton.allEq w w'
|
||||
|
||||
/-- The equivalence between Wick contractions consisting of `k.succ` contractions and
|
||||
those with `k` contractions paired with a suitable contraction pair. -/
|
||||
def levelSuccEquiv {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} (str : WickString i c o final) (k : ℕ) :
|
||||
Level str k.succ ≃ (w : Level str k) × ContrPair w.2.2 where
|
||||
toFun w :=
|
||||
match w with
|
||||
| ⟨b1, b2, w⟩ =>
|
||||
⟨⟨b1 ∘ Fin.castSucc, b2 ∘ Fin.castSucc, dropLast w⟩,
|
||||
⟨b1 (Fin.last k), b2 (Fin.last k),
|
||||
w.color_boundSnd_eq_dual_boundFst (Fin.last k),
|
||||
w.boundFst_lt_boundSnd (Fin.last k),
|
||||
fun r => w.boundFst_strictMono (Fin.castSucc_lt_last r),
|
||||
fun r a => w.boundFst_neq_boundSnd (Fin.last k) r.castSucc a.symm,
|
||||
fun r => w.boundSnd_injective.eq_iff.mp.mt (Fin.ne_last_of_lt (Fin.castSucc_lt_last r))⟩⟩
|
||||
invFun w :=
|
||||
match w with
|
||||
| ⟨⟨b1, b2, w⟩, cp⟩ => ⟨Fin.snoc b1 cp.i, Fin.snoc b2 cp.j,
|
||||
contr cp.i cp.j cp.h cp.hilej cp.hb1 cp.hb2i cp.hb2j w⟩
|
||||
left_inv w := by
|
||||
match w with
|
||||
| ⟨b1, b2, w⟩ =>
|
||||
simp only [Nat.succ_eq_add_one, Function.comp_apply]
|
||||
congr
|
||||
· exact Eq.symm (eq_snoc_castSucc b1)
|
||||
· funext b2
|
||||
congr
|
||||
exact Eq.symm (eq_snoc_castSucc b1)
|
||||
· exact Eq.symm (eq_snoc_castSucc b2)
|
||||
· rw [eq_dropLast_contr w]
|
||||
simp only [castMaps, Nat.succ_eq_add_one, cast_eq, heq_eqRec_iff_heq, heq_eq_eq,
|
||||
contr.injEq]
|
||||
rfl
|
||||
right_inv w := by
|
||||
match w with
|
||||
| ⟨⟨b1, b2, w⟩, cp⟩ =>
|
||||
simp only [Nat.succ_eq_add_one, Fin.snoc_last, Sigma.mk.inj_iff]
|
||||
apply And.intro
|
||||
· congr
|
||||
· exact Fin.snoc_comp_castSucc
|
||||
· funext b2
|
||||
congr
|
||||
exact Fin.snoc_comp_castSucc
|
||||
· exact Fin.snoc_comp_castSucc
|
||||
· exact heq_eq _ _ Fin.snoc_comp_castSucc Fin.snoc_comp_castSucc
|
||||
· congr
|
||||
· exact Fin.snoc_comp_castSucc
|
||||
· exact Fin.snoc_comp_castSucc
|
||||
· exact heq_eq _ _ Fin.snoc_comp_castSucc Fin.snoc_comp_castSucc
|
||||
· simp
|
||||
· simp
|
||||
· simp
|
||||
|
||||
/-- The sum of `boundFst` and `boundSnd`, giving on `Sum.inl k` the first index
|
||||
in the `k`th contraction, and on `Sum.inr k` the second index in the `k`th contraction. -/
|
||||
def bound {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : Fin k ⊕ Fin k → Fin n :=
|
||||
Sum.elim w.boundFst w.boundSnd
|
||||
|
||||
/-- On `Sum.inl k` the map `bound` acts via `boundFst`. -/
|
||||
@[simp]
|
||||
lemma bound_inl {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) (i : Fin k) : w.bound (Sum.inl i) = w.boundFst i := rfl
|
||||
|
||||
/-- On `Sum.inr k` the map `bound` acts via `boundSnd`. -/
|
||||
@[simp]
|
||||
lemma bound_inr {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) (i : Fin k) : w.bound (Sum.inr i) = w.boundSnd i := rfl
|
||||
|
||||
lemma bound_injection {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : Function.Injective w.bound := by
|
||||
intro x y h
|
||||
match x, y with
|
||||
| Sum.inl x, Sum.inl y =>
|
||||
simp only [bound_inl] at h
|
||||
simpa using (StrictMono.injective w.boundFst_strictMono).eq_iff.mp h
|
||||
| Sum.inr x, Sum.inr y =>
|
||||
simp only [bound_inr] at h
|
||||
simpa using w.boundSnd_injective h
|
||||
| Sum.inl x, Sum.inr y =>
|
||||
simp only [bound_inl, bound_inr] at h
|
||||
exact False.elim (w.boundFst_neq_boundSnd x y h)
|
||||
| Sum.inr x, Sum.inl y =>
|
||||
simp only [bound_inr, bound_inl] at h
|
||||
exact False.elim (w.boundFst_neq_boundSnd y x h.symm)
|
||||
|
||||
lemma bound_le_total {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : 2 * k ≤ n := by
|
||||
refine Fin.nonempty_embedding_iff.mp ⟨w.bound ∘ finSumFinEquiv.symm ∘ Fin.cast (Nat.two_mul k),
|
||||
?_⟩
|
||||
apply Function.Injective.comp (Function.Injective.comp _ finSumFinEquiv.symm.injective)
|
||||
· exact Fin.cast_injective (Nat.two_mul k)
|
||||
· exact bound_injection w
|
||||
|
||||
/-- The list of fields (indexed by `Fin n`) in a Wick contraction which are not bound,
|
||||
i.e. which do not appear in any contraction. -/
|
||||
def unboundList {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : List (Fin n) :=
|
||||
List.filter (fun i => decide (∀ r, w.bound r ≠ i)) (List.finRange n)
|
||||
|
||||
/-- THe list of field positions which are not contracted has no duplicates. -/
|
||||
lemma unboundList_nodup {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : (w.unboundList).Nodup :=
|
||||
List.Nodup.filter _ (List.nodup_finRange n)
|
||||
|
||||
/-- The length of the `unboundList` is equal to `n - 2 * k`. That is
|
||||
the total number of fields minus the number of contracted fields. -/
|
||||
lemma unboundList_length {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
|
||||
w.unboundList.length = n - 2 * k := by
|
||||
rw [← List.Nodup.dedup w.unboundList_nodup]
|
||||
rw [← List.card_toFinset, unboundList]
|
||||
rw [List.toFinset_filter, List.toFinset_finRange]
|
||||
have hn := Finset.filter_card_add_filter_neg_card_eq_card (s := Finset.univ)
|
||||
(fun (i : Fin n) => i ∈ Finset.image w.bound Finset.univ)
|
||||
have hn' :(Finset.filter (fun i => i ∈ Finset.image w.bound Finset.univ) Finset.univ).card =
|
||||
(Finset.image w.bound Finset.univ).card := by
|
||||
refine Finset.card_equiv (Equiv.refl _) fun i => ?_
|
||||
simp
|
||||
rw [hn'] at hn
|
||||
rw [Finset.card_image_of_injective] at hn
|
||||
simp only [Finset.card_univ, Fintype.card_sum, Fintype.card_fin,
|
||||
Finset.mem_univ, true_and, Sum.exists, bound_inl, bound_inr, not_or, not_exists] at hn
|
||||
have hn'' : (Finset.filter (fun a => a ∉ Finset.image w.bound Finset.univ) Finset.univ).card =
|
||||
n - 2 * k := by
|
||||
omega
|
||||
rw [← hn'']
|
||||
congr
|
||||
funext x
|
||||
simp only [ne_eq, Sum.forall, bound_inl, bound_inr, Bool.decide_and, Bool.and_eq_true,
|
||||
decide_eq_true_eq, Finset.mem_image, Finset.mem_univ, true_and, Sum.exists, not_or, not_exists]
|
||||
exact bound_injection w
|
||||
|
||||
lemma unboundList_sorted {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n} (w : WickContract str b1 b2) :
|
||||
List.Sorted (fun i j => i < j) w.unboundList :=
|
||||
List.Pairwise.sublist (List.filter_sublist (List.finRange n)) (List.pairwise_lt_finRange n)
|
||||
|
||||
/-- The ordered embedding giving the fields which are not bound in a contraction. These
|
||||
are the fields that will appear in a normal operator in Wick's theorem. -/
|
||||
def unbound {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯}
|
||||
{no : ℕ} {o : Fin no → S.𝓯} {str : WickString i c o final}
|
||||
{k : ℕ} {b1 b2 : Fin k → Fin n}
|
||||
(w : WickContract str b1 b2) : Fin (n - 2 * k) ↪o Fin n where
|
||||
toFun := w.unboundList.get ∘ Fin.cast w.unboundList_length.symm
|
||||
inj' := by
|
||||
apply Function.Injective.comp
|
||||
· rw [← List.nodup_iff_injective_get]
|
||||
exact w.unboundList_nodup
|
||||
· exact Fin.cast_injective _
|
||||
map_rel_iff' := by
|
||||
refine fun {a b} => StrictMono.le_iff_le ?_
|
||||
rw [Function.Embedding.coeFn_mk]
|
||||
apply StrictMono.comp
|
||||
· exact List.Sorted.get_strictMono w.unboundList_sorted
|
||||
· exact fun ⦃a b⦄ a => a
|
||||
|
||||
informal_lemma level_fintype where
|
||||
math :≈ "Level is a finite type, as there are only finitely many ways to contract a Wick string."
|
||||
deps :≈ [``Level]
|
||||
|
||||
informal_definition HasEqualTimeContractions where
|
||||
math :≈ "The condition for a Wick contraction to have two fields contracted
|
||||
which are of equal time, i.e. come from the same vertex."
|
||||
deps :≈ [``WickContract]
|
||||
|
||||
informal_definition IsConnected where
|
||||
math :≈ "The condition for a full Wick contraction that for any two vertices
|
||||
(including external vertices) are connected by contractions."
|
||||
deps :≈ [``WickContract]
|
||||
|
||||
informal_definition HasVacuumContributions where
|
||||
math :≈ "The condition for a full Wick contraction to have a vacuum contribution."
|
||||
deps :≈ [``WickContract]
|
||||
|
||||
informal_definition IsOneParticleIrreducible where
|
||||
math :≈ "The condition for a full Wick contraction to be one-particle irreducible."
|
||||
deps :≈ [``WickContract]
|
||||
|
||||
end WickContract
|
||||
|
||||
end Wick
|
|
@ -194,4 +194,3 @@ lemma superCommute_ofList_ofListM_sum {I : Type} {f : I → Type} [∀ i, Finty
|
|||
|
||||
end
|
||||
end Wick
|
||||
#min_imports
|
||||
|
|
|
@ -1,35 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Contract
|
||||
/-!
|
||||
|
||||
# Wick contraction in momentum space
|
||||
|
||||
Every complete Wick contraction leads to a function on momenta, following
|
||||
the Feynman rules.
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
informal_definition toMomentumTensorTree where
|
||||
math :≈ "A function which takes a Wick contraction,
|
||||
and corresponding momenta, and outputs the corresponding
|
||||
tensor tree associated with that contraction. The rules for how this is done
|
||||
is given by the `Feynman rules`.
|
||||
The appropriate ring to consider here is a ring permitting the abstract notion of a
|
||||
Dirac delta function. "
|
||||
ref :≈ "
|
||||
Some references for Feynman rules are:
|
||||
- QED Feynman rules: http://hitoshi.berkeley.edu/public_html/129A/point.pdf,
|
||||
- Weyl Fermions: http://scipp.ucsc.edu/~haber/susybook/feyn115.pdf."
|
||||
|
||||
informal_definition toMomentumTensor where
|
||||
math :≈ "The tensor associated to `toMomentumTensorTree` associated with a Wick contraction,
|
||||
and corresponding internal momenta, and external momenta."
|
||||
deps :≈ [``toMomentumTensorTree]
|
||||
|
||||
end Wick
|
|
@ -1,24 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Basic
|
||||
import HepLean.Meta.Informal.Basic
|
||||
/-!
|
||||
|
||||
# Wick contraction in position space
|
||||
|
||||
Every complete Wick contraction leads to a function on positions, following
|
||||
the Feynman rules.
|
||||
|
||||
## Further reading
|
||||
|
||||
The following reference provides a good resource for Wick contractions of external fields.
|
||||
- http://www.dylanjtemples.com:82/solutions/QFT_Solution_I-6.pdf
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
end Wick
|
|
@ -1,81 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.Logic.Function.Basic
|
||||
import HepLean.Meta.Informal.Basic
|
||||
import HepLean.Meta.Notes.Basic
|
||||
import HepLean.Lorentz.RealVector.Basic
|
||||
/-!
|
||||
|
||||
# Wick Species
|
||||
|
||||
Note: There is very likely a much better name for what we here call a Wick Species.
|
||||
|
||||
A Wick Species is a structure containing the basic information needed to write wick contractions
|
||||
for a theory, and calculate their corresponding Feynman diagrams.
|
||||
|
||||
-/
|
||||
|
||||
/-! TODO: There should be some sort of notion of a group action on a Wick Species. -/
|
||||
namespace Wick
|
||||
|
||||
note "
|
||||
<h2>Wick Species</h2>
|
||||
|
||||
To do perturbation theory for a quantum field theory, we need a quantum field theory, or
|
||||
at least enough data from a quantum field theory to write down necessary constructions.
|
||||
The first bit of data we need is a type of fields `𝓯`. We also need to know what fields
|
||||
are dual to what other fields, for example in a complex scalar theory `φ` is dual to `φ†`.
|
||||
We can encode this information in an involution `ξ : 𝓯 → 𝓯`.
|
||||
<br><br>
|
||||
The second bit of data we need is how the fields interact with each other. In other words,
|
||||
a list of interaction vertices `𝓘`, and the type of fields associated to each vertex.
|
||||
<br><br>
|
||||
This necessary information to do perturbation theory is encoded in a `Wick Species`, which
|
||||
we define as:
|
||||
"
|
||||
|
||||
/-- The basic structure needed to write down Wick contractions for a theory and
|
||||
calculate the corresponding Feynman diagrams.
|
||||
|
||||
WARNING: This definition is not yet complete. -/
|
||||
@[note_attr]
|
||||
structure Species where
|
||||
/-- The color of Field operators which appear in a theory.
|
||||
One may wish to call these `half-edges`, however we restrict this terminology
|
||||
to Feynman diagrams. -/
|
||||
𝓯 : Type
|
||||
/-- The map taking a field operator to its dual operator. -/
|
||||
ξ : 𝓯 → 𝓯
|
||||
/-- The condition that `ξ` is an involution. -/
|
||||
ξ_involutive : Function.Involutive ξ
|
||||
/-- The color of interaction terms which appear in a theory.
|
||||
One may wish to call these `vertices`, however we restrict this terminology
|
||||
to Feynman diagrams. -/
|
||||
𝓘 : Type
|
||||
/-- The fields associated to each interaction term. -/
|
||||
𝓘Fields : 𝓘 → Σ n, Fin n → 𝓯
|
||||
/-- The map taking a field to `0` if it is a boson and `1` if it is a fermion.
|
||||
Note that this definition suffers a similar problem to Boolean Blindness. -/
|
||||
grade : 𝓯 → Fin 2
|
||||
|
||||
namespace Species
|
||||
|
||||
variable (S : Species)
|
||||
|
||||
/-- When commuting two fields `f` and `g`, in the super commuator which is sematically
|
||||
`[f, g] = f g + c * g f`, this is `c`. -/
|
||||
def commFactor (f g : S.𝓯) : ℂ := - (- 1) ^ (S.grade f * S.grade g : ℕ)
|
||||
|
||||
informal_definition 𝓕 where
|
||||
math :≈ "The orbits of the involution `ξ`.
|
||||
May have to define a multiplicative action of ℤ₂ on `𝓯`, and
|
||||
take the orbits of this."
|
||||
physics :≈ "The different types of fields present in a theory."
|
||||
deps :≈ [``Species]
|
||||
|
||||
end Species
|
||||
|
||||
end Wick
|
|
@ -1,133 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Meta.Informal.Basic
|
||||
import HepLean.PerturbationTheory.Wick.Species
|
||||
import Mathlib.Data.Fin.Tuple.Basic
|
||||
/-!
|
||||
# Wick strings
|
||||
|
||||
A wick string is defined to be a sequence of input fields,
|
||||
followed by a squence of vertices, followed by a sequence of output fields.
|
||||
|
||||
A wick string can be combined with an appropriate map to spacetime to produce a specific
|
||||
term in the ring of operators. This has yet to be implemented.
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
|
||||
variable {S : Species}
|
||||
|
||||
/-- A helper function for `WickString`. It is used to seperate incoming, vertex, and
|
||||
outgoing nodes. -/
|
||||
inductive WickStringLast where
|
||||
| incoming : WickStringLast
|
||||
| vertex : WickStringLast
|
||||
| outgoing : WickStringLast
|
||||
| final : WickStringLast
|
||||
|
||||
open WickStringLast
|
||||
|
||||
/-- A wick string is a representation of a string of fields from a theory.
|
||||
The use of vertices in the Wick string
|
||||
allows us to identify which fields have the same space-time coordinate.
|
||||
|
||||
Note: Fields are added to `c` from right to left - matching how we would write this on
|
||||
pen and paper.
|
||||
|
||||
The incoming and outgoing fields should be viewed as asymptotic fields.
|
||||
While the internal fields associated with vertices are fields at fixed space-time points.
|
||||
-/
|
||||
inductive WickString : {ni : ℕ} → (i : Fin ni → S.𝓯) → {n : ℕ} → (c : Fin n → S.𝓯) →
|
||||
{no : ℕ} → (o : Fin no → S.𝓯) → WickStringLast → Type where
|
||||
| empty : WickString Fin.elim0 Fin.elim0 Fin.elim0 incoming
|
||||
| incoming {n ni no : ℕ} {i : Fin ni → S.𝓯} {c : Fin n → S.𝓯}
|
||||
{o : Fin no → S.𝓯} (w : WickString i c o incoming) (e : S.𝓯) :
|
||||
WickString (Fin.cons e i) (Fin.cons e c) o incoming
|
||||
| endIncoming {n ni no : ℕ} {i : Fin ni → S.𝓯} {c : Fin n → S.𝓯}
|
||||
{o : Fin no → S.𝓯} (w : WickString i c o incoming) : WickString i c o vertex
|
||||
| vertex {n ni no : ℕ} {i : Fin ni → S.𝓯} {c : Fin n → S.𝓯}
|
||||
{o : Fin no → S.𝓯} (w : WickString i c o vertex) (v : S.𝓘) :
|
||||
WickString i (Fin.append (S.𝓘Fields v).2 c) o vertex
|
||||
| endVertex {n ni no : ℕ} {i : Fin ni → S.𝓯} {c : Fin n → S.𝓯}
|
||||
{o : Fin no → S.𝓯} (w : WickString i c o vertex) : WickString i c o outgoing
|
||||
| outgoing {n ni no : ℕ} {i : Fin ni → S.𝓯} {c : Fin n → S.𝓯}
|
||||
{o : Fin no → S.𝓯} (w : WickString i c o outgoing) (e : S.𝓯) :
|
||||
WickString i (Fin.cons e c) (Fin.cons e o) outgoing
|
||||
| endOutgoing {n ni no : ℕ} {i : Fin ni → S.𝓯} {c : Fin n → S.𝓯}
|
||||
{o : Fin no → S.𝓯} (w : WickString i c o outgoing) : WickString i c o final
|
||||
|
||||
namespace WickString
|
||||
|
||||
/-- The number of nodes in a Wick string. This is used to help prove termination. -/
|
||||
def size {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯} {no : ℕ} {o : Fin no → S.𝓯}
|
||||
{f : WickStringLast} : WickString i c o f → ℕ := fun
|
||||
| empty => 0
|
||||
| incoming w e => size w + 1
|
||||
| endIncoming w => size w + 1
|
||||
| vertex w v => size w + 1
|
||||
| endVertex w => size w + 1
|
||||
| outgoing w e => size w + 1
|
||||
| endOutgoing w => size w + 1
|
||||
|
||||
/-- The number of vertices in a Wick string. This does NOT include external vertices. -/
|
||||
def numIntVertex {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯} {no : ℕ} {o : Fin no → S.𝓯}
|
||||
{f : WickStringLast} : WickString i c o f → ℕ := fun
|
||||
| empty => 0
|
||||
| incoming w e => numIntVertex w
|
||||
| endIncoming w => numIntVertex w
|
||||
| vertex w v => numIntVertex w + 1
|
||||
| endVertex w => numIntVertex w
|
||||
| outgoing w e => numIntVertex w
|
||||
| endOutgoing w => numIntVertex w
|
||||
|
||||
/-- The vertices present in a Wick string. This does NOT include external vertices. -/
|
||||
def intVertex {ni : ℕ} {i : Fin ni → S.𝓯} {n : ℕ} {c : Fin n → S.𝓯} {no : ℕ} {o : Fin no → S.𝓯}
|
||||
{f : WickStringLast} : (w : WickString i c o f) → Fin w.numIntVertex → S.𝓘 := fun
|
||||
| empty => Fin.elim0
|
||||
| incoming w e => intVertex w
|
||||
| endIncoming w => intVertex w
|
||||
| vertex w v => Fin.cons v (intVertex w)
|
||||
| endVertex w => intVertex w
|
||||
| outgoing w e => intVertex w
|
||||
| endOutgoing w => intVertex w
|
||||
|
||||
informal_definition intExtVertex where
|
||||
math :≈ "The vertices present in a Wick string, including external vertices."
|
||||
deps :≈ [``WickString]
|
||||
|
||||
informal_definition fieldToIntExtVertex where
|
||||
math :≈ "A function which takes a field and returns the internal or
|
||||
external vertex it is associated with."
|
||||
deps :≈ [``WickString]
|
||||
|
||||
informal_definition exponentialPrefactor where
|
||||
math :≈ "The combinatorical prefactor from the expansion of the
|
||||
exponential associated with a Wick string."
|
||||
deps :≈ [``intVertex, ``WickString]
|
||||
|
||||
informal_definition vertexPrefactor where
|
||||
math :≈ "The prefactor arising from the coefficent of vertices in the
|
||||
Lagrangian. This should not take account of the exponential prefactor."
|
||||
deps :≈ [``intVertex, ``WickString]
|
||||
|
||||
informal_definition minNoLoops where
|
||||
math :≈ "The minimum number of loops a Feynman diagram based on a given Wick string can have.
|
||||
There should be a lemma proving this statement."
|
||||
deps :≈ [``WickString]
|
||||
|
||||
informal_definition LoopLevel where
|
||||
math :≈ "The type of Wick strings for fixed input and output which may permit a Feynman diagram
|
||||
which have a number of loops less than or equal to some number."
|
||||
deps :≈ [``minNoLoops, ``WickString]
|
||||
|
||||
informal_lemma loopLevel_fintype where
|
||||
math :≈ "The instance of a finite type on `LoopLevel`."
|
||||
deps :≈ [``LoopLevel]
|
||||
|
||||
end WickString
|
||||
|
||||
end Wick
|
|
@ -1,34 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Species
|
||||
/-!
|
||||
|
||||
# Wick's theorem
|
||||
|
||||
Wick's theorem is related to a result in probability theory called Isserlis' theorem.
|
||||
|
||||
-/
|
||||
|
||||
namespace Wick
|
||||
note r"
|
||||
<h2>Wick's theorem</h2>
|
||||
"
|
||||
|
||||
informal_lemma_note wicks_theorem where
|
||||
math :≈ "Wick's theorem for fields which are not normally ordered."
|
||||
|
||||
informal_lemma wicks_theorem_normal_order where
|
||||
math :≈ "Wick's theorem for which fields at the same space-time point are normally ordered."
|
||||
ref :≈ "https://www.physics.purdue.edu/~clarkt/Courses/Physics662/ps/qftch32.pdf"
|
||||
|
||||
informal_lemma wicks_theorem_vev where
|
||||
math :≈ "Wick's theorem in a vev leaving only full contractions of Wick strings left."
|
||||
|
||||
informal_lemma wicks_theorem_asymptotic_states where
|
||||
math :≈ "Wick's theorem for a term in the Dyson series within asymptotic states
|
||||
leaves only full contractions with the asymptotic states."
|
||||
|
||||
end Wick
|
Loading…
Add table
Add a link
Reference in a new issue