feat: Fill in sorries
This commit is contained in:
parent
3123e831d8
commit
ab7da149c6
5 changed files with 1432 additions and 454 deletions
|
@ -27,15 +27,15 @@ namespace Wick
|
|||
noncomputable section
|
||||
|
||||
class SuperCommuteCenterMap {A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(f : FreeAlgebra ℂ I →ₐ[ℂ] A) : Prop where
|
||||
prop : ∀ i j, f (superCommute q (FreeAlgebra.ι ℂ i) (FreeAlgebra.ι ℂ j)) ∈ Subalgebra.center ℂ A
|
||||
|
||||
(q : I → Fin 2) (F : FreeAlgebra ℂ I →ₐ[ℂ] A) : Prop where
|
||||
prop : ∀ i j, F (superCommute q (FreeAlgebra.ι ℂ i) (FreeAlgebra.ι ℂ j)) ∈ Subalgebra.center ℂ A
|
||||
dif_grade : ∀ i j, q i ≠ q j → F (superCommute q (FreeAlgebra.ι ℂ i) (FreeAlgebra.ι ℂ j)) = 0
|
||||
namespace SuperCommuteCenterMap
|
||||
|
||||
variable {I : Type} {A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(f : FreeAlgebra ℂ I →ₐ[ℂ] A) [SuperCommuteCenterMap f]
|
||||
(f : FreeAlgebra ℂ I →ₐ[ℂ] A) (q : I → Fin 2) [SuperCommuteCenterMap q f]
|
||||
|
||||
lemma ofList_fst (q : I → Fin 2) (i j : I) :
|
||||
lemma ofList_fst (i j : I) :
|
||||
f (superCommute q (ofList [i] xa) (FreeAlgebra.ι ℂ j)) ∈ Subalgebra.center ℂ A := by
|
||||
have h1 : f (superCommute q (ofList [i] xa) (FreeAlgebra.ι ℂ j)) =
|
||||
xa • f (superCommute q (FreeAlgebra.ι ℂ i) (FreeAlgebra.ι ℂ j)) := by
|
||||
|
@ -51,7 +51,7 @@ lemma ofList_fst (q : I → Fin 2) (i j : I) :
|
|||
lemma ofList_freeAlgebraMap {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (c : (Σ i, f i)) (x : ℂ)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A] (F : FreeAlgebra ℂ (Σ i, f i) →ₐ[ℂ] A)
|
||||
[SuperCommuteCenterMap F] (b : I) :
|
||||
[SuperCommuteCenterMap (fun i => q i.1) F] (b : I) :
|
||||
F ((superCommute fun i => q i.fst) (ofList [c] x) ((freeAlgebraMap f) (FreeAlgebra.ι ℂ b)))
|
||||
∈ Subalgebra.center ℂ A := by
|
||||
rw [freeAlgebraMap_ι]
|
||||
|
@ -64,7 +64,7 @@ end SuperCommuteCenterMap
|
|||
|
||||
lemma superCommuteTake_superCommuteCenterMap {I : Type} (q : I → Fin 2) (lb : List I) (xa xb : ℂ) (n : ℕ)
|
||||
(hn : n < lb.length) {A : Type} [Semiring A] [Algebra ℂ A] (f : FreeAlgebra ℂ I →ₐ[ℂ] A)
|
||||
[SuperCommuteCenterMap f] (i : I) :
|
||||
[SuperCommuteCenterMap q f] (i : I) :
|
||||
f (superCommuteTake q [i] lb xa xb n hn) =
|
||||
f (superCommute q (ofList [i] xa) (FreeAlgebra.ι ℂ (lb.get ⟨n, hn⟩)))
|
||||
* (superCommuteCoef q [i] (List.take n lb) •
|
||||
|
@ -83,7 +83,7 @@ lemma superCommuteTakeM_F {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
|||
(q : I → Fin 2) (c : (Σ i, f i)) (r : List I) (x y : ℂ) (n : ℕ)
|
||||
(hn : n < r.length)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A] (F : FreeAlgebra ℂ (Σ i, f i) →ₐ[ℂ] A)
|
||||
[SuperCommuteCenterMap F] :
|
||||
[SuperCommuteCenterMap (fun i => q i.1) F] :
|
||||
F (superCommuteTakeM q [c] r x y n hn) = superCommuteCoefM q [c] (List.take n r) •
|
||||
(F (superCommute (fun i => q i.1) (ofList [c] x) (freeAlgebraMap f (FreeAlgebra.ι ℂ (r.get ⟨n, hn⟩))))
|
||||
* F (ofListM f (List.eraseIdx r n) y)) := by
|
||||
|
@ -105,104 +105,102 @@ lemma superCommuteTakeM_F {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
|||
|
||||
lemma superCommute_koszulOrder_le_ofList {I : Type}
|
||||
(q : I → Fin 2) (r : List I) (x : ℂ)
|
||||
(le1 :I → I → Prop) [DecidableRel le1]
|
||||
(le1 :I → I → Prop) [DecidableRel le1] [IsTotal I le1] [IsTrans I le1]
|
||||
(i : I)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ I →ₐ A) [SuperCommuteCenterMap F] :
|
||||
(F : FreeAlgebra ℂ I →ₐ A) [SuperCommuteCenterMap q F] :
|
||||
F ((superCommute q (FreeAlgebra.ι ℂ i) (koszulOrder le1 q (ofList r x)))) =
|
||||
∑ n : Fin r.length, (superCommuteCoef q [r.get n] (r.take n)) •
|
||||
(F (((superCommute q) (ofList [i] 1)) (FreeAlgebra.ι ℂ (r.get n))) *
|
||||
F ((koszulOrder le1 q) (ofList (r.eraseIdx ↑n) x))) := by
|
||||
rw [koszulOrder_ofList]
|
||||
rw [map_smul, map_smul, ← ofList_singleton]
|
||||
rw [superCommute_ofList_sum]
|
||||
rw [map_sum]
|
||||
rw [← (HepLean.List.insertionSortEquiv le1 r).sum_comp]
|
||||
rw [koszulOrder_ofList, map_smul, map_smul, ← ofList_singleton, superCommute_ofList_sum]
|
||||
rw [map_sum, ← (HepLean.List.insertionSortEquiv le1 r).sum_comp]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rhs
|
||||
enter [2, 2]
|
||||
intro n
|
||||
rw [superCommuteTake_superCommuteCenterMap]
|
||||
lhs
|
||||
rhs
|
||||
rhs
|
||||
rhs
|
||||
enter [1, 2, 2, 2]
|
||||
change ((List.insertionSort le1 r).get ∘ (HepLean.List.insertionSortEquiv le1 r)) n
|
||||
rw [HepLean.List.insertionSort_get_comp_insertionSortEquiv]
|
||||
have hListErase (n : Fin r.length ) : (List.insertionSort le1 r).eraseIdx ↑((HepLean.List.insertionSortEquiv le1 r) n)
|
||||
= List.insertionSort le1 (r.eraseIdx n) := by sorry
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rhs
|
||||
enter [2, 2]
|
||||
intro n
|
||||
rw [hListErase]
|
||||
rw [HepLean.List.eraseIdx_insertionSort_fin le1 r n]
|
||||
rw [ofList_insertionSort_eq_koszulOrder le1 q]
|
||||
rw [Finset.smul_sum]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
intro n
|
||||
rw [map_smul]
|
||||
rw [smul_smul]
|
||||
rw [Algebra.mul_smul_comm]
|
||||
rw [smul_smul]
|
||||
rw [map_smul, smul_smul, Algebra.mul_smul_comm, smul_smul]
|
||||
congr
|
||||
funext n
|
||||
congr 1
|
||||
trans superCommuteCoefLE q le1 r i n
|
||||
· rw [superCommuteCoefLE]
|
||||
rw [mul_assoc]
|
||||
exact superCommuteCoefLE_eq_get q le1 r i n
|
||||
by_cases hq : q i ≠ q (r.get n)
|
||||
· have hn := SuperCommuteCenterMap.dif_grade (q := q) (F := F) i (r.get n) hq
|
||||
conv_lhs =>
|
||||
enter [2, 1]
|
||||
rw [ofList_singleton, hn]
|
||||
conv_rhs =>
|
||||
enter [2, 1]
|
||||
rw [ofList_singleton, hn]
|
||||
simp
|
||||
· congr 1
|
||||
trans superCommuteCoefLE q le1 r i n
|
||||
· rw [superCommuteCoefLE, mul_assoc]
|
||||
refine superCommuteCoefLE_eq_get q le1 r i n ?_
|
||||
simpa using hq
|
||||
|
||||
lemma koszulOrder_of_le_all_ofList {I : Type}
|
||||
(q : I → Fin 2) (r : List I) (x : ℂ) (le1 : I → I → Prop) [DecidableRel le1]
|
||||
(i : I) (hi : ∀ j, le1 j i)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ I →ₐ A) [SuperCommuteCenterMap F] :
|
||||
(F : FreeAlgebra ℂ I →ₐ A) [SuperCommuteCenterMap q F] :
|
||||
F (koszulOrder le1 q (ofList r x * FreeAlgebra.ι ℂ i))
|
||||
= superCommuteCoef q [i] r • F (koszulOrder le1 q (FreeAlgebra.ι ℂ i * ofList r x)) := by
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rhs
|
||||
enter [2, 2]
|
||||
rw [← ofList_singleton]
|
||||
rw [ofListM_ofList_superCommute' q]
|
||||
rw [map_sub]
|
||||
rw [sub_eq_add_neg]
|
||||
rw [map_add]
|
||||
conv_lhs =>
|
||||
rhs
|
||||
rhs
|
||||
enter [2, 2]
|
||||
rw [map_smul]
|
||||
rw [← neg_smul]
|
||||
rw [map_smul, map_smul, map_smul]
|
||||
|
||||
sorry
|
||||
|
||||
lemma le_all_mul_koszulOrder_ofList {I : Type}
|
||||
(q : I → Fin 2) (r : List I) (x : ℂ) (le1 : I → I→ Prop) [DecidableRel le1]
|
||||
(i : I) (hi : ∀ (j : I), le1 j i)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ I →ₐ A) [SuperCommuteCenterMap F] :
|
||||
(F : FreeAlgebra ℂ I →ₐ A) [SuperCommuteCenterMap q F] :
|
||||
F (FreeAlgebra.ι ℂ i * koszulOrder le1 q (ofList r x)) =
|
||||
F ((koszulOrder le1 q) (FreeAlgebra.ι ℂ i * ofList r x)) +
|
||||
F (((superCommute q) (ofList [i] 1)) ((koszulOrder le1 q) (ofList r x))) := by
|
||||
rw [koszulOrder_ofList, Algebra.mul_smul_comm, map_smul, ← ofList_singleton,
|
||||
ofList_ofList_superCommute q, map_add, smul_add, ← map_smul]
|
||||
conv_lhs =>
|
||||
lhs
|
||||
rhs
|
||||
enter [1, 2]
|
||||
rw [← Algebra.smul_mul_assoc, smul_smul, mul_comm, ← smul_smul, ← koszulOrder_ofList,
|
||||
Algebra.smul_mul_assoc, ofList_singleton]
|
||||
rw [koszulOrder_mul_ge, map_smul]
|
||||
congr
|
||||
· rw [koszulOrder_of_le_all_ofList]
|
||||
sorry
|
||||
sorry
|
||||
rw [superCommuteCoef_perm_snd q [i] (List.insertionSort le1 r) r
|
||||
(List.perm_insertionSort le1 r)]
|
||||
rw [smul_smul]
|
||||
rw [superCommuteCoef_mul_self]
|
||||
simp [ofList_singleton]
|
||||
exact fun j => hi j
|
||||
· rw [map_smul, map_smul]
|
||||
· exact fun j => hi j
|
||||
|
||||
def superCommuteCenterOrder {I : Type}
|
||||
(q : I → Fin 2) (r : List I) (i : I)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ I →ₐ A) [SuperCommuteCenterMap F]
|
||||
(F : FreeAlgebra ℂ I →ₐ A) [SuperCommuteCenterMap q F]
|
||||
(n : Option (Fin r.length)) : A :=
|
||||
match n with
|
||||
| none => 1
|
||||
|
@ -212,7 +210,7 @@ def superCommuteCenterOrder {I : Type}
|
|||
lemma superCommuteCenterOrder_none {I : Type}
|
||||
(q : I → Fin 2) (r : List I) (i : I)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ I →ₐ A) [SuperCommuteCenterMap F] :
|
||||
(F : FreeAlgebra ℂ I →ₐ A) [SuperCommuteCenterMap q F] :
|
||||
superCommuteCenterOrder q r i F none = 1 := by
|
||||
simp [superCommuteCenterOrder]
|
||||
|
||||
|
@ -220,9 +218,10 @@ open HepLean.List
|
|||
|
||||
lemma le_all_mul_koszulOrder_ofList_expand {I : Type}
|
||||
(q : I → Fin 2) (r : List I) (x : ℂ) (le1 : I → I→ Prop) [DecidableRel le1]
|
||||
[IsTotal I le1] [IsTrans I le1]
|
||||
(i : I) (hi : ∀ (j : I), le1 j i)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ I →ₐ A) [SuperCommuteCenterMap F] :
|
||||
(F : FreeAlgebra ℂ I →ₐ A) [SuperCommuteCenterMap q F] :
|
||||
F (FreeAlgebra.ι ℂ i * koszulOrder le1 q (ofList r x)) =
|
||||
∑ n, superCommuteCenterOrder q r i F n * F ((koszulOrder le1 q) (ofList (optionEraseZ r i n) x)) := by
|
||||
rw [le_all_mul_koszulOrder_ofList]
|
||||
|
@ -242,9 +241,10 @@ lemma le_all_mul_koszulOrder_ofList_expand {I : Type}
|
|||
|
||||
lemma le_all_mul_koszulOrder_ofListM_expand {I : Type} {f : I → Type} [∀ i, Fintype (f i)]
|
||||
(q : I → Fin 2) (r : List I) (x : ℂ) (le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||||
[IsTotal (Σ i, f i) le1] [IsTrans (Σ i, f i) le1]
|
||||
(i : (Σ i, f i)) (hi : ∀ (j : (Σ i, f i)), le1 j i)
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [SuperCommuteCenterMap F] :
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [SuperCommuteCenterMap (fun i => q i.1) F] :
|
||||
F (ofList [i] 1 * koszulOrder le1 (fun i => q i.1) (ofListM f r x)) =
|
||||
F ((koszulOrder le1 fun i => q i.fst) (ofList [i] 1 * ofListM f r x)) +
|
||||
∑ n : (Fin r.length), superCommuteCoef q [r.get n] (List.take (↑n) r) •
|
||||
|
@ -318,19 +318,19 @@ lemma le_all_mul_koszulOrder_ofListM_expand {I : Type} {f : I → Type} [∀ i,
|
|||
rhs
|
||||
intro a0
|
||||
rw [← Finset.mul_sum]
|
||||
have hl (a0 : f (r0 :: r)[↑n]) (a : (i : Fin r.length) → f (r0 :: r)[↑(n.succAbove i)]):
|
||||
have hl (n : Fin (r0 :: r).length) (a0 : f (r0 :: r)[↑n]) (a : (i : Fin r.length) → f (r0 :: r)[↑(n.succAbove i)]):
|
||||
(ofList (optionEraseZ (liftM f (r0 :: r) ((liftMCongrEquiv f r0 r n).symm (a0, a))) i (some (Fin.cast (by simp ) n))) x)
|
||||
= ofList ((liftM f ((r0 :: r).eraseIdx ↑n) ((listMEraseEquiv q n).symm a))) x := by
|
||||
simp only [optionEraseZ, List.get_eq_getElem, List.length_cons, Fin.coe_cast]
|
||||
simp [liftMCongrEquiv]
|
||||
congr
|
||||
sorry
|
||||
conv_lhs =>
|
||||
rhs
|
||||
intro a0
|
||||
rhs
|
||||
rhs
|
||||
enter [2, 2]
|
||||
intro a
|
||||
erw [hl a0 a]
|
||||
erw [hl n a0 a]
|
||||
rw [← Finset.sum_mul]
|
||||
conv_lhs =>
|
||||
lhs
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue