refactor: Linting substrings
This commit is contained in:
parent
cee38b7be8
commit
ac1132c7ca
40 changed files with 133 additions and 132 deletions
|
@ -56,7 +56,7 @@ def proj (T : MSSMACC.LinSols) : MSSMACC.AnomalyFreePerp :=
|
|||
|
||||
lemma proj_val (T : MSSMACC.LinSols) :
|
||||
(proj T).val = (dot B₃.val T.val - dot Y₃.val T.val) • Y₃.val +
|
||||
( (dot Y₃.val T.val - 2 * dot B₃.val T.val)) • B₃.val +
|
||||
(dot Y₃.val T.val - 2 * dot B₃.val T.val) • B₃.val +
|
||||
dot Y₃.val B₃.val • T.val := by
|
||||
rfl
|
||||
|
||||
|
@ -110,7 +110,7 @@ lemma quad_self_proj (T : MSSMACC.Sols) :
|
|||
lemma quad_proj (T : MSSMACC.Sols) :
|
||||
quadBiLin (proj T.1.1).val (proj T.1.1).val = 2 * dot Y₃.val B₃.val *
|
||||
((dot B₃.val T.val - dot Y₃.val T.val) * quadBiLin Y₃.val T.val +
|
||||
(dot Y₃.val T.val - 2 * dot B₃.val T.val) * quadBiLin B₃.val T.val ) := by
|
||||
(dot Y₃.val T.val - 2 * dot B₃.val T.val) * quadBiLin B₃.val T.val) := by
|
||||
nth_rewrite 1 [proj_val]
|
||||
repeat rw [quadBiLin.map_add₁]
|
||||
repeat rw [quadBiLin.map_smul₁]
|
||||
|
@ -159,7 +159,7 @@ lemma cube_proj_proj_self (T : MSSMACC.Sols) :
|
|||
cubeTriLin (proj T.1.1).val (proj T.1.1).val T.val =
|
||||
2 * dot Y₃.val B₃.val *
|
||||
((dot B₃.val T.val - dot Y₃.val T.val) * cubeTriLin T.val T.val Y₃.val +
|
||||
( dot Y₃.val T.val- 2 * dot B₃.val T.val) * cubeTriLin T.val T.val B₃.val) := by
|
||||
(dot Y₃.val T.val - 2 * dot B₃.val T.val) * cubeTriLin T.val T.val B₃.val) := by
|
||||
rw [proj_val]
|
||||
rw [cubeTriLin.map_add₁, cubeTriLin.map_add₂]
|
||||
erw [lineY₃B₃_doublePoint]
|
||||
|
|
|
@ -155,23 +155,23 @@ def α₁ (T : MSSMACC.AnomalyFreePerp) : ℚ :=
|
|||
(3 * cubeTriLin T.val T.val B₃.val * quadBiLin T.val T.val -
|
||||
2 * cubeTriLin T.val T.val T.val * quadBiLin B₃.val T.val)
|
||||
|
||||
/-- A helper function to simplify following expressions. -/
|
||||
def α₂ (T : MSSMACC.AnomalyFreePerp) : ℚ :=
|
||||
(2 * cubeTriLin T.val T.val T.val * quadBiLin Y₃.val T.val -
|
||||
3 * cubeTriLin T.val T.val Y₃.val * quadBiLin T.val T.val)
|
||||
/-- A helper function to simplify following expressions. -/
|
||||
def α₂ (T : MSSMACC.AnomalyFreePerp) : ℚ :=
|
||||
(2 * cubeTriLin T.val T.val T.val * quadBiLin Y₃.val T.val -
|
||||
3 * cubeTriLin T.val T.val Y₃.val * quadBiLin T.val T.val)
|
||||
|
||||
/-- A helper function to simplify following expressions. -/
|
||||
def α₃ (T : MSSMACC.AnomalyFreePerp) : ℚ :=
|
||||
6 * ((cubeTriLin T.val T.val Y₃.val) * quadBiLin B₃.val T.val -
|
||||
(cubeTriLin T.val T.val B₃.val) * quadBiLin Y₃.val T.val)
|
||||
/-- A helper function to simplify following expressions. -/
|
||||
def α₃ (T : MSSMACC.AnomalyFreePerp) : ℚ :=
|
||||
6 * ((cubeTriLin T.val T.val Y₃.val) * quadBiLin B₃.val T.val -
|
||||
(cubeTriLin T.val T.val B₃.val) * quadBiLin Y₃.val T.val)
|
||||
|
||||
lemma lineQuad_cube (R : MSSMACC.AnomalyFreePerp) (c₁ c₂ c₃ : ℚ) :
|
||||
accCube (lineQuad R c₁ c₂ c₃).val =
|
||||
- 4 * ( c₁ * quadBiLin B₃.val R.val - c₂ * quadBiLin Y₃.val R.val) ^ 2 *
|
||||
( α₁ R * c₁ + α₂ R * c₂ + α₃ R * c₃ ) := by
|
||||
rw [lineQuad_val]
|
||||
rw [planeY₃B₃_cubic, α₁, α₂, α₃]
|
||||
ring
|
||||
lemma lineQuad_cube (R : MSSMACC.AnomalyFreePerp) (c₁ c₂ c₃ : ℚ) :
|
||||
accCube (lineQuad R c₁ c₂ c₃).val =
|
||||
- 4 * (c₁ * quadBiLin B₃.val R.val - c₂ * quadBiLin Y₃.val R.val) ^ 2 *
|
||||
(α₁ R * c₁ + α₂ R * c₂ + α₃ R * c₃) := by
|
||||
rw [lineQuad_val]
|
||||
rw [planeY₃B₃_cubic, α₁, α₂, α₃]
|
||||
ring
|
||||
|
||||
/-- The line in the plane spanned by `Y₃`, `B₃` and `R` which is in the cubic. -/
|
||||
def lineCube (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : ℚ) :
|
||||
|
|
|
@ -147,7 +147,7 @@ def InCubeSolProp (R : MSSMACC.Sols) : Prop :=
|
|||
that solution satisfies `inCubeSolProp`. It appears in the definition of `inLineEqProj`. -/
|
||||
def cubicCoeff (T : MSSMACC.Sols) : ℚ :=
|
||||
3 * (dot Y₃.val B₃.val) ^ 3 * (cubeTriLin T.val T.val Y₃.val ^ 2 +
|
||||
cubeTriLin T.val T.val B₃.val ^ 2 )
|
||||
cubeTriLin T.val T.val B₃.val ^ 2)
|
||||
|
||||
lemma inCubeSolProp_iff_cubicCoeff_zero (T : MSSMACC.Sols) :
|
||||
InCubeSolProp T ↔ cubicCoeff T = 0 := by
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue