refactor: Linting substrings
This commit is contained in:
parent
cee38b7be8
commit
ac1132c7ca
40 changed files with 133 additions and 132 deletions
|
@ -69,7 +69,7 @@ lemma line_in_cubic_P_P_P! {S : (PureU1 (2 * n.succ)).LinSols} (h : LineInCubic
|
|||
|
||||
/-- We say a `LinSol` satisfies `lineInCubicPerm` if all its permutations satisfy `lineInCubic`. -/
|
||||
def LineInCubicPerm (S : (PureU1 (2 * n.succ)).LinSols) : Prop :=
|
||||
∀ (M : (FamilyPermutations (2 * n.succ)).group ),
|
||||
∀ (M : (FamilyPermutations (2 * n.succ)).group),
|
||||
LineInCubic ((FamilyPermutations (2 * n.succ)).linSolRep M S)
|
||||
|
||||
/-- If `lineInCubicPerm S` then `lineInCubic S`. -/
|
||||
|
@ -104,7 +104,7 @@ lemma lineInCubicPerm_swap {S : (PureU1 (2 * n.succ)).LinSols}
|
|||
rw [accCubeTriLinSymm.map_add₃, h1, accCubeTriLinSymm.map_smul₃] at h2
|
||||
simpa using h2
|
||||
|
||||
lemma P_P_P!_accCube' {S : (PureU1 (2 * n.succ.succ )).LinSols}
|
||||
lemma P_P_P!_accCube' {S : (PureU1 (2 * n.succ.succ)).LinSols}
|
||||
(f : Fin n.succ.succ → ℚ) (g : Fin n.succ → ℚ) (hS : S.val = Pa f g) :
|
||||
accCubeTriLinSymm (P f) (P f) (basis!AsCharges (Fin.last n)) =
|
||||
- (S.val (δ!₂ (Fin.last n)) + S.val (δ!₁ (Fin.last n))) * (2 * S.val δ!₄ +
|
||||
|
@ -114,12 +114,12 @@ lemma P_P_P!_accCube' {S : (PureU1 (2 * n.succ.succ )).LinSols}
|
|||
have h2 := Pa_δ!₁ f g (Fin.last n)
|
||||
have h3 := Pa_δ!₂ f g (Fin.last n)
|
||||
simp at h1 h2 h3
|
||||
have hl : f (Fin.succ (Fin.last (n ))) = - Pa f g δ!₄ := by
|
||||
have hl : f (Fin.succ (Fin.last n)) = - Pa f g δ!₄ := by
|
||||
simp_all only [Fin.succ_last, neg_neg]
|
||||
erw [hl] at h2
|
||||
have hg : g (Fin.last n) = Pa f g (δ!₁ (Fin.last n)) + Pa f g δ!₄ := by
|
||||
linear_combination -(1 * h2)
|
||||
have hll : f (Fin.castSucc (Fin.last (n ))) =
|
||||
have hll : f (Fin.castSucc (Fin.last n)) =
|
||||
- (Pa f g (δ!₂ (Fin.last n)) + Pa f g (δ!₁ (Fin.last n)) + Pa f g δ!₄) := by
|
||||
linear_combination h3 - 1 * hg
|
||||
rw [← hS] at hl hll
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue