refactor: Linting substrings

This commit is contained in:
jstoobysmith 2024-07-12 16:22:06 -04:00
parent cee38b7be8
commit ac1132c7ca
40 changed files with 133 additions and 132 deletions

View file

@ -51,7 +51,7 @@ open PureU1Charges in
@[simp]
def permCharges {n : } : Representation (PermGroup n) (PureU1 n).Charges where
toFun f := chargeMap f⁻¹
map_mul' f g :=by
map_mul' f g := by
simp only [PermGroup, mul_inv_rev]
apply LinearMap.ext
intro S
@ -214,7 +214,7 @@ lemma permTwo_fst : (permTwo hij hij').toFun i' = i := by
lemma permTwo_snd : (permTwo hij hij').toFun j' = j := by
rw [permTwo, permOfInjection]
have ht := Equiv.extendSubtype_apply_of_mem
((permTwoInj hij' ).toEquivRange.symm.trans
((permTwoInj hij').toEquivRange.symm.trans
(permTwoInj hij).toEquivRange) j' (permTwoInj_snd hij')
simp at ht
simp [ht, permTwoInj_snd_apply]
@ -303,16 +303,15 @@ lemma Prop_two (P : × → Prop) {S : (PureU1 n).LinSols}
{a b : Fin n} (hab : a ≠ b)
(h : ∀ (f : (FamilyPermutations n).group),
P ((((FamilyPermutations n).linSolRep f S).val a),
(((FamilyPermutations n).linSolRep f S).val b)
)) : ∀ (i j : Fin n) (_ : i ≠ j),
(((FamilyPermutations n).linSolRep f S).val b))) : ∀ (i j : Fin n) (_ : i ≠ j),
P (S.val i, S.val j) := by
intro i j hij
have h1 := h (permTwo hij hab ).symm
have h1 := h (permTwo hij hab).symm
rw [FamilyPermutations_anomalyFreeLinear_apply, FamilyPermutations_anomalyFreeLinear_apply] at h1
simp at h1
change P
(S.val ((permTwo hij hab ).toFun a),
S.val ((permTwo hij hab ).toFun b)) at h1
(S.val ((permTwo hij hab).toFun a),
S.val ((permTwo hij hab).toFun b)) at h1
erw [permTwo_fst,permTwo_snd] at h1
exact h1
@ -321,9 +320,8 @@ lemma Prop_three (P : × × → Prop) {S : (PureU1 n).LinSols}
(h : ∀ (f : (FamilyPermutations n).group),
P ((((FamilyPermutations n).linSolRep f S).val a),(
(((FamilyPermutations n).linSolRep f S).val b),
(((FamilyPermutations n).linSolRep f S).val c)
))) : ∀ (i j k : Fin n) (_ : i ≠ j) (_ : j ≠ k) (_ : i ≠ k),
P (S.val i, (S.val j, S.val k)) := by
(((FamilyPermutations n).linSolRep f S).val c)))) : ∀ (i j k : Fin n)
(_ : i ≠ j) (_ : j ≠ k) (_ : i ≠ k), P (S.val i, (S.val j, S.val k)) := by
intro i j k hij hjk hik
have h1 := h (permThree hij hjk hik hab hbc hac).symm
rw [FamilyPermutations_anomalyFreeLinear_apply, FamilyPermutations_anomalyFreeLinear_apply,