refactor: LorentzTensors
This commit is contained in:
parent
3890095a17
commit
af1db2b6cb
2 changed files with 140 additions and 326 deletions
|
@ -3,85 +3,172 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzTensor.GraphicalSpecies
|
||||
import HepLean.SpaceTime.LorentzVector.Basic
|
||||
import Mathlib.CategoryTheory.Limits.FintypeCat
|
||||
import LeanCopilot
|
||||
/-!
|
||||
|
||||
# Lorentz Tensors
|
||||
|
||||
This file is currently a work-in-progress.
|
||||
In this file we define real Lorentz tensors.
|
||||
|
||||
The aim is to define Lorentz tensors, and devlop a systematic way to manipulate them.
|
||||
We implicitly follow the definition of a modular operad.
|
||||
This will relation should be made explicit in the future.
|
||||
|
||||
To manipulate them we will use the theory of modular operads
|
||||
(see e.g. [Raynor][raynor2021graphical]).
|
||||
|
||||
## References
|
||||
|
||||
-- For modular operads see: [Raynor][raynor2021graphical]
|
||||
|
||||
-/
|
||||
/-! TODO: Do complex tensors, with Van der Waerden notation for fermions. -/
|
||||
|
||||
/-!
|
||||
|
||||
## Real Lorentz tensors
|
||||
|
||||
-/
|
||||
|
||||
/-- An index of a real Lorentz tensor is up or down. -/
|
||||
inductive RealLorentzTensor.Colors where
|
||||
| up : RealLorentzTensor.Colors
|
||||
| down : RealLorentzTensor.Colors
|
||||
|
||||
def RealLorentzTensor.ColorsIndex (d : ℕ) (μ : RealLorentzTensor.Colors) : Type :=
|
||||
match μ with
|
||||
| RealLorentzTensor.Colors.up => Fin 1 ⊕ Fin d
|
||||
| RealLorentzTensor.Colors.down => Fin 1 ⊕ Fin d
|
||||
|
||||
/-- A Lorentz Tensor defined by its coordinate map. -/
|
||||
def LorentzTensor (d : ℕ) (X : FintypeCat) : Type :=
|
||||
(X → Fin 1 ⊕ Fin d) → ℝ
|
||||
structure RealLorentzTensor (d : ℕ) (X : FintypeCat) where
|
||||
color : X → RealLorentzTensor.Colors
|
||||
coord : ((x : X) → RealLorentzTensor.ColorsIndex d (color x)) → ℝ
|
||||
|
||||
/-- An instance of a additive commutative monoid on `LorentzTensor`. -/
|
||||
instance (d : ℕ) (X : FintypeCat) : AddCommMonoid (LorentzTensor d X) := Pi.addCommMonoid
|
||||
|
||||
/-- An instance of a module on `LorentzVector`. -/
|
||||
noncomputable instance (d : ℕ) (X : FintypeCat) : Module ℝ (LorentzTensor d X) := Pi.module _ _ _
|
||||
|
||||
namespace LorentzTensor
|
||||
namespace RealLorentzTensor
|
||||
open BigOperators
|
||||
open elGr
|
||||
open CategoryTheory
|
||||
universe u1
|
||||
variable {d : ℕ} {X Y Z : FintypeCat.{u1}}
|
||||
|
||||
variable {d : ℕ} {X Y : FintypeCat}
|
||||
/-- An `IndexType` for a tensor is an element of
|
||||
`(x : X) → RealLorentzTensor.ColorsIndex d (T.color x)`. -/
|
||||
@[simp]
|
||||
def IndexType (T : RealLorentzTensor d X) : Type u1 :=
|
||||
(x : X) → RealLorentzTensor.ColorsIndex d (T.color x)
|
||||
|
||||
/-- The map taking a list of `LorentzVector d` indexed by `X` to a ` LorentzTensor d X`. -/
|
||||
def tmul (t : X → LorentzVector d) : LorentzTensor d X :=
|
||||
fun f => ∏ x, (t x) (f x)
|
||||
lemma indexType_eq {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color) :
|
||||
T₁.IndexType = T₂.IndexType := by
|
||||
simp only [IndexType]
|
||||
rw [h]
|
||||
|
||||
lemma ext {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color)
|
||||
(h' : T₁.coord = T₂.coord ∘ Equiv.cast (indexType_eq h)) : T₁ = T₂ := by
|
||||
cases T₁
|
||||
cases T₂
|
||||
simp_all only [IndexType, mk.injEq]
|
||||
apply And.intro h
|
||||
simp only at h
|
||||
subst h
|
||||
simp only [Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] at h'
|
||||
subst h'
|
||||
rfl
|
||||
|
||||
/-- The involution acting on colors. -/
|
||||
def τ : Colors → Colors
|
||||
| Colors.up => Colors.down
|
||||
| Colors.down => Colors.up
|
||||
|
||||
/-- The map τ is an involution. -/
|
||||
lemma τ_involutive : Function.Involutive τ := by
|
||||
intro x
|
||||
cases x <;> rfl
|
||||
|
||||
/-- The color associated with an element of `x ∈ X` for a tensor `T`. -/
|
||||
def ch {X : FintypeCat} (x : X) (T : RealLorentzTensor d X) : Colors := T.color x
|
||||
|
||||
/-!
|
||||
|
||||
## Congruence
|
||||
|
||||
-/
|
||||
|
||||
/- An equivalence between `X → Fin 1 ⊕ Fin d` and `Y → Fin 1 ⊕ Fin d` given an isomorphism
|
||||
between `X` and `Y`. -/
|
||||
def indexEquivOfIndexHom (f : X ≅ Y) : (X → Fin 1 ⊕ Fin d) ≃ (Y → Fin 1 ⊕ Fin d) :=
|
||||
Equiv.piCongrLeft' _ (FintypeCat.equivEquivIso.symm f)
|
||||
@[simps!]
|
||||
def congrSetIndexType (d : ℕ) (f : X ≃ Y) (i : X → Colors) :
|
||||
((x : X) → ColorsIndex d (i x)) ≃ ((y : Y) → ColorsIndex d ((Equiv.piCongrLeft' _ f) i y)) :=
|
||||
Equiv.piCongrLeft' _ (f)
|
||||
|
||||
/-- Given an isomorphism of indexing sets, a linear equivalence on Lorentz tensors. -/
|
||||
noncomputable def mapOfIndexHom (f : X ≅ Y) : LorentzTensor d Y ≃ₗ[ℝ] LorentzTensor d X :=
|
||||
LinearEquiv.piCongrLeft' ℝ _ (indexEquivOfIndexHom f).symm
|
||||
/-- Given an equivalence of indexing sets, a map on Lorentz tensors. -/
|
||||
@[simps!]
|
||||
def congrSetMap (f : X ≃ Y) (T : RealLorentzTensor d X) : RealLorentzTensor d Y where
|
||||
color := (Equiv.piCongrLeft' _ f) T.color
|
||||
coord := (Equiv.piCongrLeft' _ (congrSetIndexType d f T.color)) T.coord
|
||||
|
||||
lemma congrSetMap_trans (f : X ≃ Y) (g : Y ≃ Z) (T : RealLorentzTensor d X) :
|
||||
congrSetMap g (congrSetMap f T) = congrSetMap (f.trans g) T := by
|
||||
apply ext (by rfl)
|
||||
have h1 : (congrSetIndexType d (f.trans g) T.color) = (congrSetIndexType d f T.color).trans
|
||||
(congrSetIndexType d g ((Equiv.piCongrLeft' (fun _ => Colors) f) T.color)) := by
|
||||
simp only [Equiv.piCongrLeft'_apply, Equiv.symm_trans_apply, congrSetIndexType]
|
||||
exact Equiv.coe_inj.mp rfl
|
||||
simp only [congrSetMap, Equiv.piCongrLeft'_apply, IndexType, Equiv.symm_trans_apply, h1,
|
||||
Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq]
|
||||
rfl
|
||||
|
||||
/-- An equivalence of Tensors given an equivalence of underlying sets. -/
|
||||
@[simps!]
|
||||
def congrSet (f : X ≃ Y) : RealLorentzTensor d X ≃ RealLorentzTensor d Y where
|
||||
toFun := congrSetMap f
|
||||
invFun := congrSetMap f.symm
|
||||
left_inv T := by
|
||||
rw [congrSetMap_trans, Equiv.self_trans_symm]
|
||||
rfl
|
||||
right_inv T := by
|
||||
rw [congrSetMap_trans, Equiv.symm_trans_self]
|
||||
rfl
|
||||
|
||||
lemma congrSet_trans (f : X ≃ Y) (g : Y ≃ Z) :
|
||||
(@congrSet d _ _ f).trans (congrSet g) = congrSet (f.trans g) := by
|
||||
refine Equiv.coe_inj.mp ?_
|
||||
funext T
|
||||
exact congrSetMap_trans f g T
|
||||
|
||||
lemma congrSet_refl : @congrSet d _ _ (Equiv.refl X) = Equiv.refl _ := by
|
||||
rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Multiplication
|
||||
|
||||
-/
|
||||
|
||||
/-! TODO: Following the ethos of modular operads, define multiplication of Lorentz tensors. -/
|
||||
|
||||
/-!
|
||||
|
||||
## Contraction of indices
|
||||
|
||||
-/
|
||||
|
||||
/-! TODO: Following the ethos of modular operads, define contraction of Lorentz tensors. -/
|
||||
|
||||
/-!
|
||||
|
||||
## Rising and lowering indices
|
||||
|
||||
Rising or lowering an index corresponds to changing the color of that index.
|
||||
-/
|
||||
|
||||
/-! TODO: Define the rising and lowering of indices using contraction with the metric. -/
|
||||
|
||||
/-!
|
||||
|
||||
## Graphical species and Lorentz tensors
|
||||
|
||||
-/
|
||||
|
||||
/-- The graphical species defined by Lorentz tensors.
|
||||
|
||||
For this simple case, 𝓣 gets mapped to `PUnit`, if one wishes to include fermions etc,
|
||||
then `PUnit` will change to account for the colouring of edges. -/
|
||||
noncomputable def graphicalSpecies (d : ℕ) : GraphicalSpecies where
|
||||
obj x :=
|
||||
match x with
|
||||
| ⟨𝓣⟩ => PUnit
|
||||
| ⟨as f⟩ => LorentzTensor d f
|
||||
map {x y} f :=
|
||||
match x, y, f with
|
||||
| ⟨𝓣⟩, ⟨𝓣⟩, _ => 𝟙 PUnit
|
||||
| ⟨𝓣⟩, ⟨as x⟩, ⟨f⟩ => Empty.elim f
|
||||
| ⟨as f⟩, ⟨𝓣⟩, _ => fun _ => PUnit.unit
|
||||
| ⟨as f⟩, ⟨as g⟩, ⟨h⟩ => (mapOfIndexHom h).toEquiv.toFun
|
||||
map_id X := by
|
||||
match X with
|
||||
| ⟨𝓣⟩ => rfl
|
||||
| ⟨as f⟩ => rfl
|
||||
map_comp {x y z} f g := by
|
||||
match x, y, z, f, g with
|
||||
| ⟨𝓣⟩, ⟨𝓣⟩, ⟨𝓣⟩, _, _ => rfl
|
||||
| _, ⟨𝓣⟩, ⟨as _⟩, _, ⟨g⟩ => exact Empty.elim g
|
||||
| ⟨𝓣⟩, ⟨as _⟩, _, ⟨f⟩, _ => exact Empty.elim f
|
||||
| ⟨as x⟩, ⟨as y⟩, ⟨as z⟩, ⟨f⟩, ⟨g⟩ => rfl
|
||||
| ⟨as x⟩, ⟨𝓣⟩, ⟨𝓣⟩, _, _ => rfl
|
||||
| ⟨as x⟩, ⟨as y⟩, ⟨𝓣⟩, _, _ => rfl
|
||||
/-! TODO: From Lorentz tensors graphical species. -/
|
||||
/-! TODO: Show that the action of the Lorentz group defines an action on the graphical species. -/
|
||||
|
||||
|
||||
end LorentzTensor
|
||||
end RealLorentzTensor
|
||||
|
|
|
@ -1,273 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.CategoryTheory.FintypeCat
|
||||
import Mathlib.Tactic.FinCases
|
||||
import Mathlib.Data.PFun
|
||||
import Mathlib.Data.Fintype.Sum
|
||||
import Mathlib.CategoryTheory.Limits.FintypeCat
|
||||
import Mathlib.CategoryTheory.Core
|
||||
import Mathlib.CategoryTheory.Limits.Shapes.Types
|
||||
import LeanCopilot
|
||||
/-!
|
||||
|
||||
# Graphical species
|
||||
|
||||
We define the general notion of a graphical species.
|
||||
This will be used to define contractions of Lorentz tensors.
|
||||
|
||||
## References
|
||||
|
||||
- [Raynor][raynor2021graphical]
|
||||
- https://arxiv.org/pdf/1906.01144 (TODO: add to references)
|
||||
|
||||
-/
|
||||
|
||||
open CategoryTheory
|
||||
|
||||
/-- Finite types adjoined with a distinguished object. -/
|
||||
inductive elGr where
|
||||
| 𝓣
|
||||
| as (f : FintypeCat)
|
||||
|
||||
namespace elGr
|
||||
|
||||
/-- The morphism sets between elements of `elGr`. -/
|
||||
def Hom (a b : elGr) : Type :=
|
||||
match a, b with
|
||||
| 𝓣, 𝓣 => Fin 2
|
||||
| 𝓣, as f => f × Fin 2
|
||||
| as _, 𝓣 => Empty
|
||||
| as f, as g => f ≅ g
|
||||
|
||||
instance : OfNat (Hom 𝓣 𝓣) 0 := ⟨(0 : Fin 2)⟩
|
||||
|
||||
instance : OfNat (Hom 𝓣 𝓣) 1 := ⟨(1 : Fin 2)⟩
|
||||
|
||||
|
||||
namespace Hom
|
||||
|
||||
/-- The identity morphism. -/
|
||||
@[simp]
|
||||
def id (a : elGr) : Hom a a :=
|
||||
match a with
|
||||
| 𝓣 => 0
|
||||
| as f => Iso.refl f
|
||||
|
||||
/-- The composition of two morphisms. -/
|
||||
@[simp]
|
||||
def comp {a b c : elGr} (f : Hom a b) (g : Hom b c) : Hom a c :=
|
||||
match a, b, c, f, g with
|
||||
| 𝓣, 𝓣, 𝓣, 0, 0 => 0
|
||||
| 𝓣, 𝓣, 𝓣, 0, 1 => 1
|
||||
| 𝓣, 𝓣, 𝓣, 1, 0 => 1
|
||||
| 𝓣, 𝓣, 𝓣, 1, 1 => 0
|
||||
| 𝓣, as _, 𝓣, _, g => Empty.elim g
|
||||
| 𝓣, 𝓣, as _fakeMod, 0, (g, 0) => (g, 0)
|
||||
| 𝓣, 𝓣, as _, 0, (g, 1) => (g, 1)
|
||||
| 𝓣, 𝓣, as _, 1, (g, 0) => (g, 1)
|
||||
| 𝓣, 𝓣, as _, 1, (g, 1) => (g, 0)
|
||||
| 𝓣, as _, as _, (f, 0), g => (g.hom f, 0)
|
||||
| 𝓣, as _, as _, (f, 1), g => (g.hom f, 1)
|
||||
| as _, as _, as _, f, g => f ≪≫ g
|
||||
|
||||
instance : Fintype (Hom 𝓣 𝓣) := Fin.fintype 2
|
||||
|
||||
end Hom
|
||||
|
||||
/-- The category of elementary graphs. -/
|
||||
instance : Category elGr where
|
||||
Hom := Hom
|
||||
id := Hom.id
|
||||
comp := Hom.comp
|
||||
id_comp := by
|
||||
intro X Y f
|
||||
match X, Y, f with
|
||||
| 𝓣, 𝓣, (0 : Fin 2) => rfl
|
||||
| 𝓣, 𝓣, (1 : Fin 2) => rfl
|
||||
| 𝓣, as y, (f, (0 : Fin 2)) => rfl
|
||||
| 𝓣, as y, (f, (1 : Fin 2)) => rfl
|
||||
| as x, as y, f => rfl
|
||||
comp_id := by
|
||||
intro X Y f
|
||||
match X, Y, f with
|
||||
| 𝓣, 𝓣, (0 : Fin 2) => rfl
|
||||
| 𝓣, 𝓣, (1 : Fin 2) => rfl
|
||||
| 𝓣, as y, (f, (0 : Fin 2)) => rfl
|
||||
| 𝓣, as y, (f, (1 : Fin 2)) => rfl
|
||||
| as x, as y, f => rfl
|
||||
assoc := by
|
||||
intro X Y Z W f g h
|
||||
match X, Y, Z, W, f, g, h with
|
||||
| _, _, as _, 𝓣, _, _, x => exact Empty.elim x
|
||||
| _, as _, 𝓣, _, _, x, _ => exact Empty.elim x
|
||||
| as _, 𝓣, _, _, x, _, _ => exact Empty.elim x
|
||||
| 𝓣, 𝓣, 𝓣, 𝓣, f, g, h =>
|
||||
simp only at g f h
|
||||
fin_cases g <;> fin_cases f <;> fin_cases h <;> rfl
|
||||
| 𝓣, 𝓣, 𝓣, as a, f, g, (h, hx) =>
|
||||
simp only at g f
|
||||
fin_cases g <;> fin_cases f <;> fin_cases hx <;> rfl
|
||||
| 𝓣, 𝓣, as b, as a, f, (g, hg), h =>
|
||||
simp only at g f
|
||||
fin_cases f <;> fin_cases hg <;> rfl
|
||||
| 𝓣, as c, as b, as a, (f, hf ), g, h =>
|
||||
simp only at g f
|
||||
fin_cases hf <;> rfl
|
||||
| as d, as c, as b, as a, f, g, h =>
|
||||
simp only [Hom.comp, Iso.trans_assoc]
|
||||
|
||||
def ch {X : FintypeCat} (x : X) : Hom 𝓣 (as X) := (x, 0)
|
||||
|
||||
def τ : Hom 𝓣 𝓣 := 1
|
||||
|
||||
@[simp]
|
||||
lemma τ_comp_self : τ ≫ τ = 𝟙 𝓣 := rfl
|
||||
|
||||
def coreFintypeIncl : Core FintypeCat ⥤ elGr where
|
||||
obj X := as X
|
||||
map f := f
|
||||
|
||||
noncomputable def fintypeCoprod (X Y : FintypeCat) : elGr := as (X ⨿ Y)
|
||||
|
||||
noncomputable def fintypeCoprodTerm (X : FintypeCat) : elGr := fintypeCoprod X (⊤_ FintypeCat)
|
||||
|
||||
example : CategoryTheory.Functor.ReflectsIsomorphisms FintypeCat.incl := by
|
||||
exact reflectsIsomorphisms_of_full_and_faithful FintypeCat.incl
|
||||
|
||||
|
||||
def terminalLimitCone : Limits.LimitCone (Functor.empty (FintypeCat)) where
|
||||
cone :=
|
||||
{ pt := FintypeCat.of PUnit
|
||||
π := (Functor.uniqueFromEmpty _).hom}
|
||||
isLimit := {
|
||||
lift := fun _ _ => PUnit.unit
|
||||
fac := fun _ => by rintro ⟨⟨⟩⟩
|
||||
uniq := fun _ _ _ => by
|
||||
funext
|
||||
rfl}
|
||||
|
||||
noncomputable def isoToTerm : (⊤_ FintypeCat) ≅ FintypeCat.of PUnit :=
|
||||
CategoryTheory.Limits.limit.isoLimitCone terminalLimitCone
|
||||
|
||||
noncomputable def objTerm : (⊤_ FintypeCat) := isoToTerm.inv PUnit.unit
|
||||
|
||||
noncomputable def starObj (X : FintypeCat) : (X ⨿ (⊤_ FintypeCat) : FintypeCat) :=
|
||||
(@Limits.coprod.inr _ _ X (⊤_ FintypeCat) _) objTerm
|
||||
|
||||
/- TODO: derive this from `CategoryTheory.Limits.coprod.functor`. -/
|
||||
noncomputable def coprodCore : Core FintypeCat × Core FintypeCat ⥤ Core FintypeCat where
|
||||
obj := fun (X, Y) => (X ⨿ Y : FintypeCat)
|
||||
map f := CategoryTheory.Limits.coprod.mapIso f.1 f.2
|
||||
map_id := by
|
||||
intro X
|
||||
simp [Limits.coprod.mapIso]
|
||||
trans
|
||||
· rfl
|
||||
· aesop_cat
|
||||
map_comp := by
|
||||
intro X Y Z f g
|
||||
simp_all only [prod_Hom, prod_comp]
|
||||
obtain ⟨fst, snd⟩ := X
|
||||
obtain ⟨fst_1, snd_1⟩ := Y
|
||||
obtain ⟨fst_2, snd_2⟩ := Z
|
||||
simp_all only
|
||||
dsimp [Limits.coprod.mapIso]
|
||||
congr
|
||||
· simp_all only [Limits.coprod.map_map]
|
||||
· simp_all only [Limits.coprod.map_map]
|
||||
apply Eq.refl
|
||||
|
||||
|
||||
end elGr
|
||||
|
||||
open elGr
|
||||
|
||||
/-- The category of graphical species. -/
|
||||
abbrev GraphicalSpecies := elGrᵒᵖ ⥤ Type
|
||||
|
||||
namespace GraphicalSpecies
|
||||
|
||||
variable (S : GraphicalSpecies)
|
||||
|
||||
abbrev colors := S.obj ⟨𝓣⟩
|
||||
|
||||
def MatchColours (X Y : FintypeCat) : Type :=
|
||||
Subtype fun (R : S.obj ⟨as (X ⨿ (⊤_ FintypeCat))⟩ × S.obj ⟨as (Y ⨿ (⊤_ FintypeCat))⟩) ↦
|
||||
S.map (Quiver.Hom.op $ ch (elGr.starObj X)) R.1 =
|
||||
S.map (Quiver.Hom.op $ τ ≫ ch (elGr.starObj Y)) R.2
|
||||
|
||||
|
||||
/-- Given two finite types `X` and `Y`, the objects
|
||||
of `S.obj ⟨elGr.as X⟩ × S.obj ⟨elGr.as Y⟩` which on `x ∈ X` and `y ∈ Y` map to dual colors. -/
|
||||
def MatchColor {X Y : FintypeCat} (x : X) (y : Y) : Type :=
|
||||
Subtype fun (R : S.obj ⟨elGr.as X⟩ × S.obj ⟨elGr.as Y⟩) ↦
|
||||
S.map (Quiver.Hom.op (ch x)) R.1 = S.map (Quiver.Hom.op (τ ≫ ch y)) R.2
|
||||
|
||||
/-- An element of `S.MatchColor y x ` given an element of `S.MatchColor x y`. -/
|
||||
def matchColorSwap {X Y : FintypeCat} {x : X} {y : Y} (R : S.MatchColor x y) : S.MatchColor y x :=
|
||||
⟨(R.val.2, R.val.1), by
|
||||
have hS := congrArg (S.map (Quiver.Hom.op τ)) R.2
|
||||
rw [← FunctorToTypes.map_comp_apply, ← FunctorToTypes.map_comp_apply] at hS
|
||||
rw [← op_comp, ← op_comp, ← Category.assoc] at hS
|
||||
simpa using hS.symm⟩
|
||||
|
||||
def matchColorCongrLeft {X Y Z : FintypeCat} (f : X ≅ Z) {x : X} {y : Y} (R : S.MatchColor (f.hom x) y) :
|
||||
S.MatchColor x y :=
|
||||
⟨(S.map (Quiver.Hom.op $ Hom.as f) R.val.1, R.val.2), by
|
||||
rw [← R.2, ← FunctorToTypes.map_comp_apply, ← op_comp]
|
||||
rfl⟩
|
||||
|
||||
def matchColorCongrRight {X Y Z : FintypeCat} (f : Y ≅ Z) {x : X} {y : Y} (R : S.MatchColor x (f.hom y)) :
|
||||
S.MatchColor x y :=
|
||||
⟨(R.val.1, S.map (Quiver.Hom.op $ Hom.as f) R.val.2), by
|
||||
rw [R.2, ← FunctorToTypes.map_comp_apply, ← op_comp]
|
||||
rfl⟩
|
||||
|
||||
def matchColorCongr {X Y Z W : FintypeCat} (f : X ≅ W) (g : Y ≅ Z) {x : X} {y : Y}
|
||||
(R : S.MatchColor (f.hom x) (g.hom y)) : S.MatchColor x y :=
|
||||
S.matchColorCongrLeft f (S.matchColorCongrRight g R)
|
||||
|
||||
def matchColorIndexCongrLeft {X Y : FintypeCat} {x x' : X} {y : Y} (h : x = x') (R : S.MatchColor x y) :
|
||||
S.MatchColor x' y :=
|
||||
⟨(R.val.1, R.val.2), by
|
||||
subst h
|
||||
exact R.2⟩
|
||||
|
||||
def MatchColorFin (X Y : FintypeCat) : Type :=
|
||||
@MatchColor S (FintypeCat.of $ X ⊕ Fin 1) (FintypeCat.of $ Y ⊕ Fin 1) (Sum.inr 0) (Sum.inr 0)
|
||||
|
||||
def matchColorFinCongrLeft {X Y Z : FintypeCat} (f : X ≅ W) (R : S.MatchColorFin X Y) :
|
||||
S.MatchColorFin W Z := by
|
||||
|
||||
let f' : FintypeCat.of (X ⊕ Fin 1) ≅ FintypeCat.of (W ⊕ Fin 1) :=
|
||||
FintypeCat.equivEquivIso $ Equiv.sumCongr (FintypeCat.equivEquivIso.symm f)
|
||||
(FintypeCat.equivEquivIso.symm (Iso.refl (Fin 1)))
|
||||
let x := @matchColorCongrLeft S _ (FintypeCat.of (Y ⊕ Fin 1)) _ f' (Sum.inr 0) (Sum.inr 0) R
|
||||
|
||||
end GraphicalSpecies
|
||||
|
||||
structure MulGraphicalSpecies where
|
||||
toGraphicalSpecies : GraphicalSpecies
|
||||
mul : ∀ {X Y : FintypeCat},
|
||||
toGraphicalSpecies.MatchColorFin X Y → toGraphicalSpecies.obj
|
||||
⟨elGr.as (FintypeCat.of (X ⊕ Y))⟩
|
||||
comm : ∀ {X Y : FintypeCat} {x : X} {y : Y} (R : toGraphicalSpecies.MatchColorFin X Y),
|
||||
mul R = toGraphicalSpecies.map (fintypeCoprodSwap X Y).op
|
||||
(mul (toGraphicalSpecies.matchColorSwap R))
|
||||
equivariance : ∀ {X Y Z W : FintypeCat} (f : X ≃ W) (g : Y ≃ Z) {x : X} {y : Y}
|
||||
(R : toGraphicalSpecies.MatchColor (f x) (g y)),
|
||||
toGraphicalSpecies.map (fintypeCoprodMap f g).op (mul R) =
|
||||
mul (toGraphicalSpecies.matchColorCongr f g R)
|
||||
|
||||
namespace MulGraphicalSpecies
|
||||
|
||||
variable (S : MulGraphicalSpecies)
|
||||
|
||||
def obj := S.toGraphicalSpecies.obj
|
||||
|
||||
def map {X Y : elGrᵒᵖ} (f : X ⟶ Y) : S.obj X ⟶ S.obj Y := S.toGraphicalSpecies.map f
|
||||
|
||||
end MulGraphicalSpecies
|
Loading…
Add table
Add a link
Reference in a new issue