refactor: LorentzTensors

This commit is contained in:
jstoobysmith 2024-07-11 09:16:36 -04:00
parent 3890095a17
commit af1db2b6cb
2 changed files with 140 additions and 326 deletions

View file

@ -3,85 +3,172 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license. Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith Authors: Joseph Tooby-Smith
-/ -/
import HepLean.SpaceTime.LorentzTensor.GraphicalSpecies
import HepLean.SpaceTime.LorentzVector.Basic import HepLean.SpaceTime.LorentzVector.Basic
import Mathlib.CategoryTheory.Limits.FintypeCat
import LeanCopilot
/-! /-!
# Lorentz Tensors # Lorentz Tensors
This file is currently a work-in-progress. In this file we define real Lorentz tensors.
The aim is to define Lorentz tensors, and devlop a systematic way to manipulate them. We implicitly follow the definition of a modular operad.
This will relation should be made explicit in the future.
To manipulate them we will use the theory of modular operads
(see e.g. [Raynor][raynor2021graphical]).
## References
-- For modular operads see: [Raynor][raynor2021graphical]
-/
/-! TODO: Do complex tensors, with Van der Waerden notation for fermions. -/
/-!
## Real Lorentz tensors
-/ -/
/-- An index of a real Lorentz tensor is up or down. -/
inductive RealLorentzTensor.Colors where
| up : RealLorentzTensor.Colors
| down : RealLorentzTensor.Colors
def RealLorentzTensor.ColorsIndex (d : ) (μ : RealLorentzTensor.Colors) : Type :=
match μ with
| RealLorentzTensor.Colors.up => Fin 1 ⊕ Fin d
| RealLorentzTensor.Colors.down => Fin 1 ⊕ Fin d
/-- A Lorentz Tensor defined by its coordinate map. -/ /-- A Lorentz Tensor defined by its coordinate map. -/
def LorentzTensor (d : ) (X : FintypeCat) : Type := structure RealLorentzTensor (d : ) (X : FintypeCat) where
(X → Fin 1 ⊕ Fin d) → color : X → RealLorentzTensor.Colors
coord : ((x : X) → RealLorentzTensor.ColorsIndex d (color x)) →
/-- An instance of a additive commutative monoid on `LorentzTensor`. -/ namespace RealLorentzTensor
instance (d : ) (X : FintypeCat) : AddCommMonoid (LorentzTensor d X) := Pi.addCommMonoid
/-- An instance of a module on `LorentzVector`. -/
noncomputable instance (d : ) (X : FintypeCat) : Module (LorentzTensor d X) := Pi.module _ _ _
namespace LorentzTensor
open BigOperators open BigOperators
open elGr
open CategoryTheory open CategoryTheory
universe u1
variable {d : } {X Y Z : FintypeCat.{u1}}
variable {d : } {X Y : FintypeCat} /-- An `IndexType` for a tensor is an element of
`(x : X) → RealLorentzTensor.ColorsIndex d (T.color x)`. -/
@[simp]
def IndexType (T : RealLorentzTensor d X) : Type u1 :=
(x : X) → RealLorentzTensor.ColorsIndex d (T.color x)
/-- The map taking a list of `LorentzVector d` indexed by `X` to a ` LorentzTensor d X`. -/ lemma indexType_eq {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color) :
def tmul (t : X → LorentzVector d) : LorentzTensor d X := T₁.IndexType = T₂.IndexType := by
fun f => ∏ x, (t x) (f x) simp only [IndexType]
rw [h]
lemma ext {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color)
(h' : T₁.coord = T₂.coord ∘ Equiv.cast (indexType_eq h)) : T₁ = T₂ := by
cases T₁
cases T₂
simp_all only [IndexType, mk.injEq]
apply And.intro h
simp only at h
subst h
simp only [Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] at h'
subst h'
rfl
/-- The involution acting on colors. -/
def τ : Colors → Colors
| Colors.up => Colors.down
| Colors.down => Colors.up
/-- The map τ is an involution. -/
lemma τ_involutive : Function.Involutive τ := by
intro x
cases x <;> rfl
/-- The color associated with an element of `x ∈ X` for a tensor `T`. -/
def ch {X : FintypeCat} (x : X) (T : RealLorentzTensor d X) : Colors := T.color x
/-!
## Congruence
-/
/- An equivalence between `X → Fin 1 ⊕ Fin d` and `Y → Fin 1 ⊕ Fin d` given an isomorphism /- An equivalence between `X → Fin 1 ⊕ Fin d` and `Y → Fin 1 ⊕ Fin d` given an isomorphism
between `X` and `Y`. -/ between `X` and `Y`. -/
def indexEquivOfIndexHom (f : X ≅ Y) : (X → Fin 1 ⊕ Fin d) ≃ (Y → Fin 1 ⊕ Fin d) := @[simps!]
Equiv.piCongrLeft' _ (FintypeCat.equivEquivIso.symm f) def congrSetIndexType (d : ) (f : X ≃ Y) (i : X → Colors) :
((x : X) → ColorsIndex d (i x)) ≃ ((y : Y) → ColorsIndex d ((Equiv.piCongrLeft' _ f) i y)) :=
Equiv.piCongrLeft' _ (f)
/-- Given an isomorphism of indexing sets, a linear equivalence on Lorentz tensors. -/ /-- Given an equivalence of indexing sets, a map on Lorentz tensors. -/
noncomputable def mapOfIndexHom (f : X ≅ Y) : LorentzTensor d Y ≃ₗ[] LorentzTensor d X := @[simps!]
LinearEquiv.piCongrLeft' _ (indexEquivOfIndexHom f).symm def congrSetMap (f : X ≃ Y) (T : RealLorentzTensor d X) : RealLorentzTensor d Y where
color := (Equiv.piCongrLeft' _ f) T.color
coord := (Equiv.piCongrLeft' _ (congrSetIndexType d f T.color)) T.coord
lemma congrSetMap_trans (f : X ≃ Y) (g : Y ≃ Z) (T : RealLorentzTensor d X) :
congrSetMap g (congrSetMap f T) = congrSetMap (f.trans g) T := by
apply ext (by rfl)
have h1 : (congrSetIndexType d (f.trans g) T.color) = (congrSetIndexType d f T.color).trans
(congrSetIndexType d g ((Equiv.piCongrLeft' (fun _ => Colors) f) T.color)) := by
simp only [Equiv.piCongrLeft'_apply, Equiv.symm_trans_apply, congrSetIndexType]
exact Equiv.coe_inj.mp rfl
simp only [congrSetMap, Equiv.piCongrLeft'_apply, IndexType, Equiv.symm_trans_apply, h1,
Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq]
rfl
/-- An equivalence of Tensors given an equivalence of underlying sets. -/
@[simps!]
def congrSet (f : X ≃ Y) : RealLorentzTensor d X ≃ RealLorentzTensor d Y where
toFun := congrSetMap f
invFun := congrSetMap f.symm
left_inv T := by
rw [congrSetMap_trans, Equiv.self_trans_symm]
rfl
right_inv T := by
rw [congrSetMap_trans, Equiv.symm_trans_self]
rfl
lemma congrSet_trans (f : X ≃ Y) (g : Y ≃ Z) :
(@congrSet d _ _ f).trans (congrSet g) = congrSet (f.trans g) := by
refine Equiv.coe_inj.mp ?_
funext T
exact congrSetMap_trans f g T
lemma congrSet_refl : @congrSet d _ _ (Equiv.refl X) = Equiv.refl _ := by
rfl
/-!
## Multiplication
-/
/-! TODO: Following the ethos of modular operads, define multiplication of Lorentz tensors. -/
/-!
## Contraction of indices
-/
/-! TODO: Following the ethos of modular operads, define contraction of Lorentz tensors. -/
/-!
## Rising and lowering indices
Rising or lowering an index corresponds to changing the color of that index.
-/
/-! TODO: Define the rising and lowering of indices using contraction with the metric. -/
/-! /-!
## Graphical species and Lorentz tensors ## Graphical species and Lorentz tensors
-/ -/
/-! TODO: From Lorentz tensors graphical species. -/
/-- The graphical species defined by Lorentz tensors. /-! TODO: Show that the action of the Lorentz group defines an action on the graphical species. -/
For this simple case, 𝓣 gets mapped to `PUnit`, if one wishes to include fermions etc,
then `PUnit` will change to account for the colouring of edges. -/
noncomputable def graphicalSpecies (d : ) : GraphicalSpecies where
obj x :=
match x with
| ⟨𝓣⟩ => PUnit
| ⟨as f⟩ => LorentzTensor d f
map {x y} f :=
match x, y, f with
| ⟨𝓣⟩, ⟨𝓣⟩, _ => 𝟙 PUnit
| ⟨𝓣⟩, ⟨as x⟩, ⟨f⟩ => Empty.elim f
| ⟨as f⟩, ⟨𝓣⟩, _ => fun _ => PUnit.unit
| ⟨as f⟩, ⟨as g⟩, ⟨h⟩ => (mapOfIndexHom h).toEquiv.toFun
map_id X := by
match X with
| ⟨𝓣⟩ => rfl
| ⟨as f⟩ => rfl
map_comp {x y z} f g := by
match x, y, z, f, g with
| ⟨𝓣⟩, ⟨𝓣⟩, ⟨𝓣⟩, _, _ => rfl
| _, ⟨𝓣⟩, ⟨as _⟩, _, ⟨g⟩ => exact Empty.elim g
| ⟨𝓣⟩, ⟨as _⟩, _, ⟨f⟩, _ => exact Empty.elim f
| ⟨as x⟩, ⟨as y⟩, ⟨as z⟩, ⟨f⟩, ⟨g⟩ => rfl
| ⟨as x⟩, ⟨𝓣⟩, ⟨𝓣⟩, _, _ => rfl
| ⟨as x⟩, ⟨as y⟩, ⟨𝓣⟩, _, _ => rfl
end LorentzTensor end RealLorentzTensor

View file

@ -1,273 +0,0 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import Mathlib.CategoryTheory.FintypeCat
import Mathlib.Tactic.FinCases
import Mathlib.Data.PFun
import Mathlib.Data.Fintype.Sum
import Mathlib.CategoryTheory.Limits.FintypeCat
import Mathlib.CategoryTheory.Core
import Mathlib.CategoryTheory.Limits.Shapes.Types
import LeanCopilot
/-!
# Graphical species
We define the general notion of a graphical species.
This will be used to define contractions of Lorentz tensors.
## References
- [Raynor][raynor2021graphical]
- https://arxiv.org/pdf/1906.01144 (TODO: add to references)
-/
open CategoryTheory
/-- Finite types adjoined with a distinguished object. -/
inductive elGr where
| 𝓣
| as (f : FintypeCat)
namespace elGr
/-- The morphism sets between elements of `elGr`. -/
def Hom (a b : elGr) : Type :=
match a, b with
| 𝓣, 𝓣 => Fin 2
| 𝓣, as f => f × Fin 2
| as _, 𝓣 => Empty
| as f, as g => f ≅ g
instance : OfNat (Hom 𝓣 𝓣) 0 := ⟨(0 : Fin 2)⟩
instance : OfNat (Hom 𝓣 𝓣) 1 := ⟨(1 : Fin 2)⟩
namespace Hom
/-- The identity morphism. -/
@[simp]
def id (a : elGr) : Hom a a :=
match a with
| 𝓣 => 0
| as f => Iso.refl f
/-- The composition of two morphisms. -/
@[simp]
def comp {a b c : elGr} (f : Hom a b) (g : Hom b c) : Hom a c :=
match a, b, c, f, g with
| 𝓣, 𝓣, 𝓣, 0, 0 => 0
| 𝓣, 𝓣, 𝓣, 0, 1 => 1
| 𝓣, 𝓣, 𝓣, 1, 0 => 1
| 𝓣, 𝓣, 𝓣, 1, 1 => 0
| 𝓣, as _, 𝓣, _, g => Empty.elim g
| 𝓣, 𝓣, as _fakeMod, 0, (g, 0) => (g, 0)
| 𝓣, 𝓣, as _, 0, (g, 1) => (g, 1)
| 𝓣, 𝓣, as _, 1, (g, 0) => (g, 1)
| 𝓣, 𝓣, as _, 1, (g, 1) => (g, 0)
| 𝓣, as _, as _, (f, 0), g => (g.hom f, 0)
| 𝓣, as _, as _, (f, 1), g => (g.hom f, 1)
| as _, as _, as _, f, g => f ≪≫ g
instance : Fintype (Hom 𝓣 𝓣) := Fin.fintype 2
end Hom
/-- The category of elementary graphs. -/
instance : Category elGr where
Hom := Hom
id := Hom.id
comp := Hom.comp
id_comp := by
intro X Y f
match X, Y, f with
| 𝓣, 𝓣, (0 : Fin 2) => rfl
| 𝓣, 𝓣, (1 : Fin 2) => rfl
| 𝓣, as y, (f, (0 : Fin 2)) => rfl
| 𝓣, as y, (f, (1 : Fin 2)) => rfl
| as x, as y, f => rfl
comp_id := by
intro X Y f
match X, Y, f with
| 𝓣, 𝓣, (0 : Fin 2) => rfl
| 𝓣, 𝓣, (1 : Fin 2) => rfl
| 𝓣, as y, (f, (0 : Fin 2)) => rfl
| 𝓣, as y, (f, (1 : Fin 2)) => rfl
| as x, as y, f => rfl
assoc := by
intro X Y Z W f g h
match X, Y, Z, W, f, g, h with
| _, _, as _, 𝓣, _, _, x => exact Empty.elim x
| _, as _, 𝓣, _, _, x, _ => exact Empty.elim x
| as _, 𝓣, _, _, x, _, _ => exact Empty.elim x
| 𝓣, 𝓣, 𝓣, 𝓣, f, g, h =>
simp only at g f h
fin_cases g <;> fin_cases f <;> fin_cases h <;> rfl
| 𝓣, 𝓣, 𝓣, as a, f, g, (h, hx) =>
simp only at g f
fin_cases g <;> fin_cases f <;> fin_cases hx <;> rfl
| 𝓣, 𝓣, as b, as a, f, (g, hg), h =>
simp only at g f
fin_cases f <;> fin_cases hg <;> rfl
| 𝓣, as c, as b, as a, (f, hf ), g, h =>
simp only at g f
fin_cases hf <;> rfl
| as d, as c, as b, as a, f, g, h =>
simp only [Hom.comp, Iso.trans_assoc]
def ch {X : FintypeCat} (x : X) : Hom 𝓣 (as X) := (x, 0)
def τ : Hom 𝓣 𝓣 := 1
@[simp]
lemma τ_comp_self : τ ≫ τ = 𝟙 𝓣 := rfl
def coreFintypeIncl : Core FintypeCat ⥤ elGr where
obj X := as X
map f := f
noncomputable def fintypeCoprod (X Y : FintypeCat) : elGr := as (X ⨿ Y)
noncomputable def fintypeCoprodTerm (X : FintypeCat) : elGr := fintypeCoprod X (_ FintypeCat)
example : CategoryTheory.Functor.ReflectsIsomorphisms FintypeCat.incl := by
exact reflectsIsomorphisms_of_full_and_faithful FintypeCat.incl
def terminalLimitCone : Limits.LimitCone (Functor.empty (FintypeCat)) where
cone :=
{ pt := FintypeCat.of PUnit
π := (Functor.uniqueFromEmpty _).hom}
isLimit := {
lift := fun _ _ => PUnit.unit
fac := fun _ => by rintro ⟨⟨⟩⟩
uniq := fun _ _ _ => by
funext
rfl}
noncomputable def isoToTerm : (_ FintypeCat) ≅ FintypeCat.of PUnit :=
CategoryTheory.Limits.limit.isoLimitCone terminalLimitCone
noncomputable def objTerm : (_ FintypeCat) := isoToTerm.inv PUnit.unit
noncomputable def starObj (X : FintypeCat) : (X ⨿ (_ FintypeCat) : FintypeCat) :=
(@Limits.coprod.inr _ _ X (_ FintypeCat) _) objTerm
/- TODO: derive this from `CategoryTheory.Limits.coprod.functor`. -/
noncomputable def coprodCore : Core FintypeCat × Core FintypeCat ⥤ Core FintypeCat where
obj := fun (X, Y) => (X ⨿ Y : FintypeCat)
map f := CategoryTheory.Limits.coprod.mapIso f.1 f.2
map_id := by
intro X
simp [Limits.coprod.mapIso]
trans
· rfl
· aesop_cat
map_comp := by
intro X Y Z f g
simp_all only [prod_Hom, prod_comp]
obtain ⟨fst, snd⟩ := X
obtain ⟨fst_1, snd_1⟩ := Y
obtain ⟨fst_2, snd_2⟩ := Z
simp_all only
dsimp [Limits.coprod.mapIso]
congr
· simp_all only [Limits.coprod.map_map]
· simp_all only [Limits.coprod.map_map]
apply Eq.refl
end elGr
open elGr
/-- The category of graphical species. -/
abbrev GraphicalSpecies := elGrᵒᵖ ⥤ Type
namespace GraphicalSpecies
variable (S : GraphicalSpecies)
abbrev colors := S.obj ⟨𝓣⟩
def MatchColours (X Y : FintypeCat) : Type :=
Subtype fun (R : S.obj ⟨as (X ⨿ (_ FintypeCat))⟩ × S.obj ⟨as (Y ⨿ (_ FintypeCat))⟩) ↦
S.map (Quiver.Hom.op $ ch (elGr.starObj X)) R.1 =
S.map (Quiver.Hom.op $ τ ≫ ch (elGr.starObj Y)) R.2
/-- Given two finite types `X` and `Y`, the objects
of `S.obj ⟨elGr.as X⟩ × S.obj ⟨elGr.as Y⟩` which on `x ∈ X` and `y ∈ Y` map to dual colors. -/
def MatchColor {X Y : FintypeCat} (x : X) (y : Y) : Type :=
Subtype fun (R : S.obj ⟨elGr.as X⟩ × S.obj ⟨elGr.as Y⟩) ↦
S.map (Quiver.Hom.op (ch x)) R.1 = S.map (Quiver.Hom.op (τ ≫ ch y)) R.2
/-- An element of `S.MatchColor y x ` given an element of `S.MatchColor x y`. -/
def matchColorSwap {X Y : FintypeCat} {x : X} {y : Y} (R : S.MatchColor x y) : S.MatchColor y x :=
⟨(R.val.2, R.val.1), by
have hS := congrArg (S.map (Quiver.Hom.op τ)) R.2
rw [← FunctorToTypes.map_comp_apply, ← FunctorToTypes.map_comp_apply] at hS
rw [← op_comp, ← op_comp, ← Category.assoc] at hS
simpa using hS.symm⟩
def matchColorCongrLeft {X Y Z : FintypeCat} (f : X ≅ Z) {x : X} {y : Y} (R : S.MatchColor (f.hom x) y) :
S.MatchColor x y :=
⟨(S.map (Quiver.Hom.op $ Hom.as f) R.val.1, R.val.2), by
rw [← R.2, ← FunctorToTypes.map_comp_apply, ← op_comp]
rfl⟩
def matchColorCongrRight {X Y Z : FintypeCat} (f : Y ≅ Z) {x : X} {y : Y} (R : S.MatchColor x (f.hom y)) :
S.MatchColor x y :=
⟨(R.val.1, S.map (Quiver.Hom.op $ Hom.as f) R.val.2), by
rw [R.2, ← FunctorToTypes.map_comp_apply, ← op_comp]
rfl⟩
def matchColorCongr {X Y Z W : FintypeCat} (f : X ≅ W) (g : Y ≅ Z) {x : X} {y : Y}
(R : S.MatchColor (f.hom x) (g.hom y)) : S.MatchColor x y :=
S.matchColorCongrLeft f (S.matchColorCongrRight g R)
def matchColorIndexCongrLeft {X Y : FintypeCat} {x x' : X} {y : Y} (h : x = x') (R : S.MatchColor x y) :
S.MatchColor x' y :=
⟨(R.val.1, R.val.2), by
subst h
exact R.2⟩
def MatchColorFin (X Y : FintypeCat) : Type :=
@MatchColor S (FintypeCat.of $ X ⊕ Fin 1) (FintypeCat.of $ Y ⊕ Fin 1) (Sum.inr 0) (Sum.inr 0)
def matchColorFinCongrLeft {X Y Z : FintypeCat} (f : X ≅ W) (R : S.MatchColorFin X Y) :
S.MatchColorFin W Z := by
let f' : FintypeCat.of (X ⊕ Fin 1) ≅ FintypeCat.of (W ⊕ Fin 1) :=
FintypeCat.equivEquivIso $ Equiv.sumCongr (FintypeCat.equivEquivIso.symm f)
(FintypeCat.equivEquivIso.symm (Iso.refl (Fin 1)))
let x := @matchColorCongrLeft S _ (FintypeCat.of (Y ⊕ Fin 1)) _ f' (Sum.inr 0) (Sum.inr 0) R
end GraphicalSpecies
structure MulGraphicalSpecies where
toGraphicalSpecies : GraphicalSpecies
mul : ∀ {X Y : FintypeCat},
toGraphicalSpecies.MatchColorFin X Y → toGraphicalSpecies.obj
⟨elGr.as (FintypeCat.of (X ⊕ Y))⟩
comm : ∀ {X Y : FintypeCat} {x : X} {y : Y} (R : toGraphicalSpecies.MatchColorFin X Y),
mul R = toGraphicalSpecies.map (fintypeCoprodSwap X Y).op
(mul (toGraphicalSpecies.matchColorSwap R))
equivariance : ∀ {X Y Z W : FintypeCat} (f : X ≃ W) (g : Y ≃ Z) {x : X} {y : Y}
(R : toGraphicalSpecies.MatchColor (f x) (g y)),
toGraphicalSpecies.map (fintypeCoprodMap f g).op (mul R) =
mul (toGraphicalSpecies.matchColorCongr f g R)
namespace MulGraphicalSpecies
variable (S : MulGraphicalSpecies)
def obj := S.toGraphicalSpecies.obj
def map {X Y : elGrᵒᵖ} (f : X ⟶ Y) : S.obj X ⟶ S.obj Y := S.toGraphicalSpecies.map f
end MulGraphicalSpecies