refactor: Rename CrAnAlgebra
This commit is contained in:
parent
9a5676e134
commit
b0735a1e13
16 changed files with 214 additions and 214 deletions
|
@ -3,7 +3,7 @@ Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.NormalOrder
|
||||
import HepLean.PerturbationTheory.Algebras.FieldOpFreeAlgebra.NormalOrder
|
||||
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.SuperCommute
|
||||
/-!
|
||||
|
||||
|
@ -12,7 +12,7 @@ import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.SuperCommute
|
|||
-/
|
||||
|
||||
namespace FieldSpecification
|
||||
open CrAnAlgebra
|
||||
open FieldOpFreeAlgebra
|
||||
open HepLean.List
|
||||
open FieldStatistic
|
||||
|
||||
|
@ -52,12 +52,12 @@ lemma ι_normalOrderF_superCommuteF_ofCrAnList_ofCrAnList_eq_zero
|
|||
|
||||
lemma ι_normalOrderF_superCommuteF_ofCrAnList_eq_zero
|
||||
(φa φa' : 𝓕.CrAnStates) (φs : List 𝓕.CrAnStates)
|
||||
(a : 𝓕.CrAnAlgebra) : ι 𝓝ᶠ(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * a) = 0 := by
|
||||
(a : 𝓕.FieldOpFreeAlgebra) : ι 𝓝ᶠ(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * a) = 0 := by
|
||||
have hf : ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
|
||||
mulLinearMap (ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca) = 0 := by
|
||||
apply ofCrAnListBasis.ext
|
||||
intro l
|
||||
simp only [CrAnAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
|
||||
simp only [FieldOpFreeAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
|
||||
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
|
||||
exact ι_normalOrderF_superCommuteF_ofCrAnList_ofCrAnList_eq_zero φa φa' φs l
|
||||
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
|
||||
|
@ -66,7 +66,7 @@ lemma ι_normalOrderF_superCommuteF_ofCrAnList_eq_zero
|
|||
simp
|
||||
|
||||
lemma ι_normalOrderF_superCommuteF_ofCrAnState_eq_zero_mul (φa φa' : 𝓕.CrAnStates)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
(a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓝ᶠ(a * [ofCrAnState φa, ofCrAnState φa']ₛca * b) = 0 := by
|
||||
rw [mul_assoc]
|
||||
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ mulLinearMap.flip
|
||||
|
@ -75,7 +75,7 @@ lemma ι_normalOrderF_superCommuteF_ofCrAnState_eq_zero_mul (φa φa' : 𝓕.CrA
|
|||
([ofCrAnState φa, ofCrAnState φa']ₛca * b) = 0 := by
|
||||
apply ofCrAnListBasis.ext
|
||||
intro l
|
||||
simp only [mulLinearMap, CrAnAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp,
|
||||
simp only [mulLinearMap, FieldOpFreeAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp,
|
||||
Function.comp_apply, LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk,
|
||||
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
|
||||
rw [← mul_assoc]
|
||||
|
@ -85,7 +85,7 @@ lemma ι_normalOrderF_superCommuteF_ofCrAnState_eq_zero_mul (φa φa' : 𝓕.CrA
|
|||
|
||||
lemma ι_normalOrderF_superCommuteF_ofCrAnState_ofCrAnList_eq_zero_mul (φa : 𝓕.CrAnStates)
|
||||
(φs : List 𝓕.CrAnStates)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
(a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓝ᶠ(a * [ofCrAnState φa, ofCrAnList φs]ₛca * b) = 0 := by
|
||||
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList_eq_sum]
|
||||
rw [Finset.mul_sum, Finset.sum_mul]
|
||||
|
@ -97,7 +97,7 @@ lemma ι_normalOrderF_superCommuteF_ofCrAnState_ofCrAnList_eq_zero_mul (φa :
|
|||
rw [ι_normalOrderF_superCommuteF_ofCrAnState_eq_zero_mul]
|
||||
|
||||
lemma ι_normalOrderF_superCommuteF_ofCrAnList_ofCrAnState_eq_zero_mul (φa : 𝓕.CrAnStates)
|
||||
(φs : List 𝓕.CrAnStates) (a b : 𝓕.CrAnAlgebra) :
|
||||
(φs : List 𝓕.CrAnStates) (a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓝ᶠ(a * [ofCrAnList φs, ofCrAnState φa]ₛca * b) = 0 := by
|
||||
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList_symm, ofCrAnList_singleton]
|
||||
simp only [FieldStatistic.instCommGroup.eq_1, FieldStatistic.ofList_singleton, mul_neg,
|
||||
|
@ -106,7 +106,7 @@ lemma ι_normalOrderF_superCommuteF_ofCrAnList_ofCrAnState_eq_zero_mul (φa :
|
|||
simp
|
||||
|
||||
lemma ι_normalOrderF_superCommuteF_ofCrAnList_ofCrAnList_eq_zero_mul
|
||||
(φs φs' : List 𝓕.CrAnStates) (a b : 𝓕.CrAnAlgebra) :
|
||||
(φs φs' : List 𝓕.CrAnStates) (a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓝ᶠ(a * [ofCrAnList φs, ofCrAnList φs']ₛca * b) = 0 := by
|
||||
rw [superCommuteF_ofCrAnList_ofCrAnList_eq_sum, Finset.mul_sum, Finset.sum_mul]
|
||||
rw [map_sum, map_sum]
|
||||
|
@ -118,7 +118,7 @@ lemma ι_normalOrderF_superCommuteF_ofCrAnList_ofCrAnList_eq_zero_mul
|
|||
|
||||
lemma ι_normalOrderF_superCommuteF_ofCrAnList_eq_zero_mul
|
||||
(φs : List 𝓕.CrAnStates)
|
||||
(a b c : 𝓕.CrAnAlgebra) :
|
||||
(a b c : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓝ᶠ(a * [ofCrAnList φs, c]ₛca * b) = 0 := by
|
||||
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
|
||||
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF (ofCrAnList φs)) c = 0
|
||||
|
@ -126,7 +126,7 @@ lemma ι_normalOrderF_superCommuteF_ofCrAnList_eq_zero_mul
|
|||
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF (ofCrAnList φs)) = 0 := by
|
||||
apply ofCrAnListBasis.ext
|
||||
intro φs'
|
||||
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, CrAnAlgebra.ofListBasis_eq_ofList,
|
||||
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, FieldOpFreeAlgebra.ofListBasis_eq_ofList,
|
||||
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
|
||||
LinearMap.zero_apply]
|
||||
rw [ι_normalOrderF_superCommuteF_ofCrAnList_ofCrAnList_eq_zero_mul]
|
||||
|
@ -135,14 +135,14 @@ lemma ι_normalOrderF_superCommuteF_ofCrAnList_eq_zero_mul
|
|||
|
||||
@[simp]
|
||||
lemma ι_normalOrderF_superCommuteF_eq_zero_mul
|
||||
(a b c d : 𝓕.CrAnAlgebra) : ι 𝓝ᶠ(a * [d, c]ₛca * b) = 0 := by
|
||||
(a b c d : 𝓕.FieldOpFreeAlgebra) : ι 𝓝ᶠ(a * [d, c]ₛca * b) = 0 := by
|
||||
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
|
||||
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF.flip c) d = 0
|
||||
have hf : (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
|
||||
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF.flip c) = 0 := by
|
||||
apply ofCrAnListBasis.ext
|
||||
intro φs
|
||||
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, CrAnAlgebra.ofListBasis_eq_ofList,
|
||||
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, FieldOpFreeAlgebra.ofListBasis_eq_ofList,
|
||||
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
|
||||
LinearMap.zero_apply]
|
||||
rw [ι_normalOrderF_superCommuteF_ofCrAnList_eq_zero_mul]
|
||||
|
@ -150,26 +150,26 @@ lemma ι_normalOrderF_superCommuteF_eq_zero_mul
|
|||
simp
|
||||
|
||||
@[simp]
|
||||
lemma ι_normalOrder_superCommuteF_eq_zero_mul_right (b c d : 𝓕.CrAnAlgebra) :
|
||||
lemma ι_normalOrder_superCommuteF_eq_zero_mul_right (b c d : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓝ᶠ([d, c]ₛca * b) = 0 := by
|
||||
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul 1 b c d]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma ι_normalOrderF_superCommuteF_eq_zero_mul_left (a c d : 𝓕.CrAnAlgebra) :
|
||||
lemma ι_normalOrderF_superCommuteF_eq_zero_mul_left (a c d : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓝ᶠ(a * [d, c]ₛca) = 0 := by
|
||||
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul a 1 c d]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma ι_normalOrderF_superCommuteF_eq_zero_mul_mul_right (a b1 b2 c d: 𝓕.CrAnAlgebra) :
|
||||
lemma ι_normalOrderF_superCommuteF_eq_zero_mul_mul_right (a b1 b2 c d: 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓝ᶠ(a * [d, c]ₛca * b1 * b2) = 0 := by
|
||||
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul a (b1 * b2) c d]
|
||||
congr 2
|
||||
noncomm_ring
|
||||
|
||||
@[simp]
|
||||
lemma ι_normalOrderF_superCommuteF_eq_zero (c d : 𝓕.CrAnAlgebra) : ι 𝓝ᶠ([d, c]ₛca) = 0 := by
|
||||
lemma ι_normalOrderF_superCommuteF_eq_zero (c d : 𝓕.FieldOpFreeAlgebra) : ι 𝓝ᶠ([d, c]ₛca) = 0 := by
|
||||
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul 1 1 c d]
|
||||
simp
|
||||
|
||||
|
@ -179,10 +179,10 @@ lemma ι_normalOrderF_superCommuteF_eq_zero (c d : 𝓕.CrAnAlgebra) : ι 𝓝
|
|||
|
||||
-/
|
||||
|
||||
lemma ι_normalOrderF_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
|
||||
lemma ι_normalOrderF_zero_of_mem_ideal (a : 𝓕.FieldOpFreeAlgebra)
|
||||
(h : a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι 𝓝ᶠ(a) = 0 := by
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at h
|
||||
let p {k : Set 𝓕.CrAnAlgebra} (a : CrAnAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) := ι 𝓝ᶠ(a) = 0
|
||||
let p {k : Set 𝓕.FieldOpFreeAlgebra} (a : FieldOpFreeAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) := ι 𝓝ᶠ(a) = 0
|
||||
change p a h
|
||||
apply AddSubgroup.closure_induction
|
||||
· intro x hx
|
||||
|
@ -211,7 +211,7 @@ lemma ι_normalOrderF_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
|
|||
· intro x hx
|
||||
simp [p]
|
||||
|
||||
lemma ι_normalOrderF_eq_of_equiv (a b : 𝓕.CrAnAlgebra) (h : a ≈ b) :
|
||||
lemma ι_normalOrderF_eq_of_equiv (a b : 𝓕.FieldOpFreeAlgebra) (h : a ≈ b) :
|
||||
ι 𝓝ᶠ(a) = ι 𝓝ᶠ(b) := by
|
||||
rw [equiv_iff_sub_mem_ideal] at h
|
||||
rw [LinearMap.sub_mem_ker_iff.mp]
|
||||
|
@ -241,7 +241,7 @@ scoped[FieldSpecification.FieldOpAlgebra] notation "𝓝(" a ")" => normalOrder
|
|||
|
||||
-/
|
||||
|
||||
lemma normalOrder_eq_ι_normalOrderF (a : 𝓕.CrAnAlgebra) :
|
||||
lemma normalOrder_eq_ι_normalOrderF (a : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓝(ι a) = ι 𝓝ᶠ(a) := rfl
|
||||
|
||||
lemma normalOrder_ofCrAnFieldOpList (φs : List 𝓕.CrAnStates) :
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue