refactor: Fix imports and some lint
This commit is contained in:
parent
14bf127335
commit
b2ac704d80
14 changed files with 47 additions and 69 deletions
|
@ -67,7 +67,6 @@ lemma succsAbove_predAboveI {i x : Fin n.succ.succ} (h : i ≠ x) :
|
|||
rw [Fin.le_def] at h1
|
||||
omega
|
||||
|
||||
|
||||
lemma predAboveI_eq_iff {i x : Fin n.succ.succ} (h : i ≠ x) (y : Fin n.succ) :
|
||||
y = predAboveI i x ↔ i.succAbove y = x := by
|
||||
apply Iff.intro
|
||||
|
@ -87,7 +86,6 @@ lemma predAboveI_ge {i x : Fin n.succ.succ} (h : i.val < x.val) :
|
|||
simp [predAboveI, h]
|
||||
omega
|
||||
|
||||
|
||||
lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x : Fin n) :
|
||||
i.succAbove (j.succAbove x) =
|
||||
(i.succAbove j).succAbove ((predAboveI (i.succAbove j) i).succAbove x) := by
|
||||
|
@ -178,7 +176,7 @@ def finExtractOne {n : ℕ} (i : Fin n.succ) : Fin n.succ ≃ Fin 1 ⊕ Fin n :=
|
|||
lemma finExtractOne_apply_eq {n : ℕ} (i : Fin n.succ) :
|
||||
finExtractOne i i = Sum.inl 0 := by
|
||||
simp [finExtractOne]
|
||||
have h1 : Fin.cast (finExtractOne.proof_1 i) i = Fin.castAdd ((n - ↑i) ) ⟨i.1, lt_add_one i.1⟩ := by
|
||||
have h1 : Fin.cast (finExtractOne.proof_1 i) i = Fin.castAdd ((n - ↑i)) ⟨i.1, lt_add_one i.1⟩ := by
|
||||
simp [Fin.ext_iff]
|
||||
rw [h1, finSumFinEquiv_symm_apply_castAdd]
|
||||
simp
|
||||
|
@ -246,7 +244,6 @@ lemma finExtractOne_symm_inl_apply {n : ℕ} (i : Fin n.succ) :
|
|||
ext
|
||||
rfl
|
||||
|
||||
|
||||
def finExtractOnPermHom (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
|
||||
Fin n.succ → Fin n.succ := fun x => predAboveI (σ i) (σ ((finExtractOne i).symm (Sum.inr x)))
|
||||
|
||||
|
@ -282,7 +279,6 @@ def finExtractOnePerm (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ
|
|||
right_inv x := by
|
||||
simpa using congrFun (finExtractOnPermHom_inv (σ i) σ.symm) x
|
||||
|
||||
|
||||
/-- The equivalence of types `Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n` extracting
|
||||
the `i` and `(i.succAbove j)`. -/
|
||||
def finExtractTwo {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
|
@ -291,7 +287,6 @@ def finExtractTwo {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
|||
(Equiv.sumCongr (Equiv.refl (Fin 1)) (finExtractOne j)).trans <|
|
||||
(Equiv.sumAssoc (Fin 1) (Fin 1) (Fin n)).symm
|
||||
|
||||
|
||||
@[simp]
|
||||
lemma finExtractTwo_apply_fst {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
finExtractTwo i j i = Sum.inl (Sum.inl 0) := by
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue