refactor: Fix imports and some lint

This commit is contained in:
jstoobysmith 2024-10-19 08:49:26 +00:00
parent 14bf127335
commit b2ac704d80
14 changed files with 47 additions and 69 deletions

View file

@ -67,7 +67,6 @@ lemma succsAbove_predAboveI {i x : Fin n.succ.succ} (h : i ≠ x) :
rw [Fin.le_def] at h1
omega
lemma predAboveI_eq_iff {i x : Fin n.succ.succ} (h : i ≠ x) (y : Fin n.succ) :
y = predAboveI i x ↔ i.succAbove y = x := by
apply Iff.intro
@ -87,7 +86,6 @@ lemma predAboveI_ge {i x : Fin n.succ.succ} (h : i.val < x.val) :
simp [predAboveI, h]
omega
lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x : Fin n) :
i.succAbove (j.succAbove x) =
(i.succAbove j).succAbove ((predAboveI (i.succAbove j) i).succAbove x) := by
@ -178,7 +176,7 @@ def finExtractOne {n : } (i : Fin n.succ) : Fin n.succ ≃ Fin 1 ⊕ Fin n :=
lemma finExtractOne_apply_eq {n : } (i : Fin n.succ) :
finExtractOne i i = Sum.inl 0 := by
simp [finExtractOne]
have h1 : Fin.cast (finExtractOne.proof_1 i) i = Fin.castAdd ((n - ↑i) ) ⟨i.1, lt_add_one i.1⟩ := by
have h1 : Fin.cast (finExtractOne.proof_1 i) i = Fin.castAdd ((n - ↑i)) ⟨i.1, lt_add_one i.1⟩ := by
simp [Fin.ext_iff]
rw [h1, finSumFinEquiv_symm_apply_castAdd]
simp
@ -246,7 +244,6 @@ lemma finExtractOne_symm_inl_apply {n : } (i : Fin n.succ) :
ext
rfl
def finExtractOnPermHom (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ.succ) :
Fin n.succ → Fin n.succ := fun x => predAboveI (σ i) (σ ((finExtractOne i).symm (Sum.inr x)))
@ -282,7 +279,6 @@ def finExtractOnePerm (i : Fin n.succ.succ) (σ : Fin n.succ.succ ≃ Fin n.succ
right_inv x := by
simpa using congrFun (finExtractOnPermHom_inv (σ i) σ.symm) x
/-- The equivalence of types `Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n` extracting
the `i` and `(i.succAbove j)`. -/
def finExtractTwo {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
@ -291,7 +287,6 @@ def finExtractTwo {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
(Equiv.sumCongr (Equiv.refl (Fin 1)) (finExtractOne j)).trans <|
(Equiv.sumAssoc (Fin 1) (Fin 1) (Fin n)).symm
@[simp]
lemma finExtractTwo_apply_fst {n : } (i : Fin n.succ.succ) (j : Fin n.succ) :
finExtractTwo i j i = Sum.inl (Sum.inl 0) := by