refactor: Fix imports and some lint

This commit is contained in:
jstoobysmith 2024-10-19 08:49:26 +00:00
parent 14bf127335
commit b2ac704d80
14 changed files with 47 additions and 69 deletions

View file

@ -12,7 +12,6 @@ There is very likely a better way to do this using `TensorStruct.contrMap_tprod`
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
@ -32,34 +31,34 @@ lemma contrFin1Fin1_naturality {n : } {c c1 : Fin n.succ.succ → S.C}
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
(perm_contr_cond S h σ)).hom.hom
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )).hom
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))).hom
:= by
have h1 : (S.F.map (extractTwoAux' i j σ)) ≫ (S.contrFin1Fin1 c1 i j h).hom
= (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
(perm_contr_cond S h σ)).hom
≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )) := by
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))) := by
erw [← CategoryTheory.Iso.eq_comp_inv ]
rw [CategoryTheory.Category.assoc]
erw [← CategoryTheory.Iso.inv_comp_eq ]
ext1
apply TensorProduct.ext'
intro x y
intro x y
simp only [Nat.succ_eq_add_one, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, CategoryStruct.comp,
extractOne_homToEquiv, Action.Hom.comp_hom, LinearMap.coe_comp]
trans (S.F.map (extractTwoAux' i j σ)).hom (PiTensorProduct.tprod S.k (fun k =>
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map
(eqToHom (by simp; erw [perm_contr_cond S h σ]))).hom y) )
(eqToHom (by simp; erw [perm_contr_cond S h σ]))).hom y))
· apply congrArg
have h1' {α :Type} {a b c d : α} (hab : a= b) (hcd : c =d ) (h : a = d) : b = c := by
rw [← hab, hcd]
have h1' {α :Type} {a b c d : α} (hab : a= b) (hcd : c = d) (h : a = d) : b = c := by
rw [← hab, hcd]
exact h
have h1 := S.contrFin1Fin1_inv_tmul c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
(perm_contr_cond S h σ ) x y
(perm_contr_cond S h σ) x y
refine h1' ?_ ?_ h1
congr
apply congrArg
@ -71,7 +70,7 @@ lemma contrFin1Fin1_naturality {n : } {c c1 : Fin n.succ.succ → S.C}
((S.FDiscrete.map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i))).hom x ⊗ₜ[S.k]
(S.FDiscrete.map (Discrete.eqToHom (congrArg S.τ (Hom.toEquiv_comp_inv_apply σ i)))).hom y)
rw [contrFin1Fin1_inv_tmul]
change ((lift.obj S.FDiscrete).map (extractTwoAux' i j σ)).hom _ = _
change ((lift.obj S.FDiscrete).map (extractTwoAux' i j σ)).hom _ = _
rw [lift.map_tprod]
apply congrArg
funext i
@ -79,13 +78,12 @@ lemma contrFin1Fin1_naturality {n : } {c c1 : Fin n.succ.succ → S.C}
| Sum.inl 0 => rfl
| Sum.inr 0 =>
simp [lift.discreteFunctorMapEqIso]
change ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y = ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y
change ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y = ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y
rw [← Functor.map_comp, ← Functor.map_comp]
simp only [Fin.isValue, Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply,
eqToHom_trans]
exact congrArg (λ f => Action.Hom.hom f) h1
lemma contrIso_comm_aux_1 {n : } {c c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
@ -110,12 +108,12 @@ lemma contrIso_comm_aux_2 {n : } {c c1 : Fin n.succ.succ → S.C}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
(S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom ≫
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom =
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom =
(S.F.μIso _ _).inv.hom ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom
:= by
have h1 : (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)) ≫
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv =
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv =
(S.F.μIso _ _).inv ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)) := by
erw [CategoryTheory.IsIso.comp_inv_eq, CategoryTheory.Category.assoc]
erw [CategoryTheory.IsIso.eq_inv_comp ]
@ -132,31 +130,31 @@ lemma contrIso_comm_aux_3 {n : } {c c1 : Fin n.succ.succ → S.C}
PUnit.unit ≫
(S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom
= (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) )).hom).hom
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom ≫
(S.F.map (extractTwo i j σ)).hom := by
change (S.F.map (extractTwoAux i j σ)).hom ≫ _ = _
change (S.F.map (extractTwoAux i j σ)).hom ≫ _ = _
have h1 : (S.F.map (extractTwoAux i j σ)) ≫ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom) =
(S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) )).hom) ≫ (S.F.map (extractTwo i j σ)) := by
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom) ≫ (S.F.map (extractTwo i j σ)) := by
rw [← Functor.map_comp, ← Functor.map_comp]
apply congrArg
rfl
exact congrArg (λ f => Action.Hom.hom f) h1
def contrIsoComm {n : } {c c1 : Fin n.succ.succ → S.C}
def contrIsoComm {n : } {c c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :=
(((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i)
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )) ⊗ (S.F.map (extractTwo i j σ)))
: (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))) ⊗ (S.F.map (extractTwo i j σ)))
lemma contrIso_comm_aux_5 {n : } {c c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ} (h : c1 (i.succAbove j) = S.τ (c1 i))
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
(S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom ≫
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom)
= ((S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
= ((S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)
(perm_contr_cond S h σ)).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) )).hom).hom)
((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom)
≫ (S.contrIsoComm σ).hom
:= by
erw [← CategoryTheory.MonoidalCategory.tensor_comp (f₁ := (S.F.map (extractTwoAux' i j σ)).hom)]
@ -164,15 +162,14 @@ lemma contrIso_comm_aux_5 {n : } {c c1 : Fin n.succ.succ → S.C}
rw [contrFin1Fin1_naturality S h σ]
simp [contrIsoComm]
lemma contrIso_comm_map {n : } {c c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ}
{h : c1 (i.succAbove j) = S.τ (c1 i)}
(σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
(S.F.map σ) ≫ (S.contrIso c1 i j h).hom =
(S.contrIso c ((OverColor.Hom.toEquiv σ).symm i)
(((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ)).hom
contrIsoComm S σ := by
(((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ)).hom ≫
contrIsoComm S σ := by
ext1
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom,
extractOne_homToEquiv, Action.instMonoidalCategory_tensorHom_hom]
@ -196,7 +193,6 @@ lemma contrIso_comm_map {n : } {c c1 : Fin n.succ.succ → S.C}
Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj] using contrIso_comm_aux_5 S h σ
/-- Contraction commutes with `S.F.map σ` on removing corresponding indices from `σ`. -/
lemma contrMap_naturality {n : } {c c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)}
@ -221,7 +217,7 @@ lemma contrMap_naturality {n : } {c c1 : Fin n.succ.succ → S.C}
apply congrArg
rw [contrIsoComm]
rw [← tensor_comp]
have h1 : 𝟙_ (Rep S.k S.G) ◁ S.F.map (extractTwo i j σ) = 𝟙 _ ⊗ S.F.map (extractTwo i j σ) := by
have h1 : 𝟙_ (Rep S.k S.G) ◁ S.F.map (extractTwo i j σ) = 𝟙 _ ⊗ S.F.map (extractTwo i j σ) := by
rfl
rw [h1, ← tensor_comp]
erw [CategoryTheory.Category.id_comp, CategoryTheory.Category.comp_id]
@ -233,7 +229,6 @@ lemma contrMap_naturality {n : } {c c1 : Fin n.succ.succ → S.C}
end
end TensorStruct
namespace TensorTree
variable {S : TensorStruct}