refactor: More spellings
This commit is contained in:
parent
dc5b63c4a7
commit
b4333f038a
10 changed files with 21 additions and 21 deletions
|
@ -61,7 +61,7 @@ lemma coMetric_basis_expand_tree : {η' | μ ν}ᵀ.tensor =
|
|||
(smul (-1) (tensorNode (basisVector ![Color.down, Color.down] (fun _ => 3))))).tensor :=
|
||||
coMetric_basis_expand
|
||||
|
||||
/-- The expansion of the Lorentz contrvariant metric in terms of basis vectors. -/
|
||||
/-- The expansion of the Lorentz contravariant metric in terms of basis vectors. -/
|
||||
lemma contrMatrix_basis_expand : {η | μ ν}ᵀ.tensor =
|
||||
basisVector ![Color.up, Color.up] (fun _ => 0)
|
||||
- basisVector ![Color.up, Color.up] (fun _ => 1)
|
||||
|
@ -87,7 +87,7 @@ lemma contrMatrix_basis_expand : {η | μ ν}ᵀ.tensor =
|
|||
simp only [Fin.isValue, Lorentz.complexContrBasisFin4, Basis.coe_reindex, Function.comp_apply]
|
||||
rfl
|
||||
|
||||
/-- The expansion of the Lorentz contrvariant metric in terms of basis vectors as
|
||||
/-- The expansion of the Lorentz contravariant metric in terms of basis vectors as
|
||||
a structured tensor tree. -/
|
||||
lemma contrMatrix_basis_expand_tree : {η | μ ν}ᵀ.tensor =
|
||||
(TensorTree.add (tensorNode (basisVector ![Color.up, Color.up] (fun _ => 0))) <|
|
||||
|
|
|
@ -118,7 +118,7 @@ def dual : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ := η * Λᵀ * η
|
|||
lemma dual_id : @dual d 1 = 1 := by
|
||||
simpa only [dual, transpose_one, mul_one] using minkowskiMatrix.sq
|
||||
|
||||
/-- The Minkowski dual swaps multiplications (acts contrvariantly). -/
|
||||
/-- The Minkowski dual swaps multiplications (acts contravariantly). -/
|
||||
@[simp]
|
||||
lemma dual_mul : dual (Λ * Λ') = dual Λ' * dual Λ := by
|
||||
simp only [dual, transpose_mul]
|
||||
|
|
|
@ -405,7 +405,7 @@ lemma σSAL_repr_inr_2 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
|||
linear_combination (norm := ring_nf) -h0
|
||||
simp only [σSAL, Basis.mk_repr, Fin.isValue, sub_self]
|
||||
|
||||
/-- The relationship between the basis `σSA` of contrvariant Pauli-matrices and the basis
|
||||
/-- The relationship between the basis `σSA` of contravariant Pauli-matrices and the basis
|
||||
`σSAL` of covariant Pauli matrices is by multiplication by the Minkowski matrix. -/
|
||||
lemma σSA_minkowskiMetric_σSAL (i : Fin 1 ⊕ Fin 3) :
|
||||
σSA i = minkowskiMatrix i i • σSAL i := by
|
||||
|
|
|
@ -25,7 +25,7 @@ open minkowskiMatrix
|
|||
Lorentz vectors. In index notation these have an up index `ψⁱ`. -/
|
||||
def Contr (d : ℕ) : Rep ℝ (LorentzGroup d) := Rep.of ContrMod.rep
|
||||
|
||||
/-- The representation of contrvariant Lorentz vectors forms a topological space, induced
|
||||
/-- The representation of contravariant Lorentz vectors forms a topological space, induced
|
||||
by its equivalence to `Fin 1 ⊕ Fin d → ℝ`. -/
|
||||
instance : TopologicalSpace (Contr d) := TopologicalSpace.induced
|
||||
ContrMod.toFin1dℝEquiv (Pi.topologicalSpace)
|
||||
|
|
|
@ -113,7 +113,7 @@ lemma stdBasis_apply (μ ν : Fin 1 ⊕ Fin d) : (stdBasis μ).val ν = if μ =
|
|||
refine ite_congr ?h₁ (congrFun rfl) (congrFun rfl)
|
||||
exact Eq.propIntro (fun a => id (Eq.symm a)) fun a => id (Eq.symm a)
|
||||
|
||||
/-- Decomposition of a contrvariant Lorentz vector into the standard basis. -/
|
||||
/-- Decomposition of a contravariant Lorentz vector into the standard basis. -/
|
||||
lemma stdBasis_decomp (v : ContrMod d) : v = ∑ i, v.toFin1dℝ i • stdBasis i := by
|
||||
apply toFin1dℝEquiv.injective
|
||||
simp only [map_sum, _root_.map_smul]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue