refactor: More spellings
This commit is contained in:
parent
dc5b63c4a7
commit
b4333f038a
10 changed files with 21 additions and 21 deletions
|
@ -19,8 +19,8 @@ open FieldStatistic
|
|||
|
||||
variable (𝓕 : FieldSpecification)
|
||||
|
||||
/-- The set contains the super-commutors equal to zero in the operator algebra.
|
||||
This contains e.g. the super-commutor of two creation operators. -/
|
||||
/-- The set contains the super-commutators equal to zero in the operator algebra.
|
||||
This contains e.g. the super-commutator of two creation operators. -/
|
||||
def fieldOpIdealSet : Set (FieldOpFreeAlgebra 𝓕) :=
|
||||
{ x |
|
||||
(∃ (φ1 φ2 φ3 : 𝓕.CrAnFieldOp),
|
||||
|
@ -42,7 +42,7 @@ def fieldOpIdealSet : Set (FieldOpFreeAlgebra 𝓕) :=
|
|||
This corresponds to the condition that two operators with different statistics always
|
||||
super-commute. In other words, fermions and bosons always super-commute.
|
||||
- `[ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca`. This corresponds to the condition,
|
||||
when combined with the conditions above, that the super-commutor is in the center of the
|
||||
when combined with the conditions above, that the super-commutator is in the center of the
|
||||
of the algebra.
|
||||
-/
|
||||
abbrev FieldOpAlgebra : Type := (TwoSidedIdeal.span 𝓕.fieldOpIdealSet).ringCon.Quotient
|
||||
|
|
|
@ -229,8 +229,8 @@ The proof of this result ultimately goes as follows
|
|||
a `ofCrAnList φsn` where `φsn` is the normal ordering of `φ₀…φₙ`.
|
||||
- `superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum` is used to rewrite the super commutator of `φ`
|
||||
(considered as a list with one element) with
|
||||
`ofCrAnList φsn` as a sum of supercommutors, one for each element of `φsn`.
|
||||
- The fact that super-commutors are in the center of `𝓕.FieldOpAlgebra` is used to rearrange terms.
|
||||
`ofCrAnList φsn` as a sum of super commutators, one for each element of `φsn`.
|
||||
- The fact that super-commutators are in the center of `𝓕.FieldOpAlgebra` is used to rearrange terms.
|
||||
- Properties of ordered lists, and `normalOrderSign_eraseIdx` are then used to complete the proof.
|
||||
-/
|
||||
lemma ofCrAnOp_superCommute_normalOrder_ofCrAnList_sum (φ : 𝓕.CrAnFieldOp)
|
||||
|
@ -281,7 +281,7 @@ lemma ofCrAnOp_superCommute_normalOrder_ofFieldOpList_sum (φ : 𝓕.CrAnFieldOp
|
|||
rw [← Finset.sum_mul, ← map_sum, ← map_sum, ← ofFieldOp_eq_sum, ← ofFieldOpList_eq_sum]
|
||||
|
||||
/--
|
||||
The commutor of the annihilation part of a field operator with a normal ordered list of field
|
||||
The commutator of the annihilation part of a field operator with a normal ordered list of field
|
||||
operators can be decomposed into the sum of the commutators of the annihilation part with each
|
||||
element of the list of field operators, i.e.
|
||||
`[anPart φ, 𝓝(φ₀…φₙ)]ₛ= ∑ i, 𝓢(φ, φ₀…φᵢ₋₁) • [anPart φ, φᵢ]ₛ * 𝓝(φ₀…φᵢ₋₁φᵢ₊₁…φₙ)`.
|
||||
|
|
|
@ -49,7 +49,7 @@ lemma ι_superCommuteF_eq_of_equiv_right (a b1 b2 : 𝓕.FieldOpFreeAlgebra) (h
|
|||
simp only [LinearMap.mem_ker, ← map_sub]
|
||||
exact ι_superCommuteF_right_zero_of_mem_ideal a (b1 - b2) h
|
||||
|
||||
/-- The super commutor on the `FieldOpAlgebra` defined as a linear map `[a,_]ₛ`. -/
|
||||
/-- The super commutator on the `FieldOpAlgebra` defined as a linear map `[a,_]ₛ`. -/
|
||||
noncomputable def superCommuteRight (a : 𝓕.FieldOpFreeAlgebra) :
|
||||
FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where
|
||||
toFun := Quotient.lift (ι.toLinearMap ∘ₗ superCommuteF a)
|
||||
|
@ -367,7 +367,7 @@ lemma superCommute_anPart_ofFieldOp (φ φ' : 𝓕.FieldOp) :
|
|||
## Mul equal superCommute
|
||||
|
||||
Lemmas which rewrite a multiplication of two elements of the algebra as their commuted
|
||||
multiplication with a sign plus the super commutor.
|
||||
multiplication with a sign plus the super commutator.
|
||||
|
||||
-/
|
||||
|
||||
|
@ -446,7 +446,7 @@ lemma anPart_mul_anPart_swap (φ φ' : 𝓕.FieldOp) :
|
|||
|
||||
/-!
|
||||
|
||||
## Symmetry of the super commutor.
|
||||
## Symmetry of the super commutator.
|
||||
|
||||
-/
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ namespace FieldOpFreeAlgebra
|
|||
|
||||
/-!
|
||||
|
||||
## The super commutor on the FieldOpFreeAlgebra.
|
||||
## The super commutator on the FieldOpFreeAlgebra.
|
||||
|
||||
-/
|
||||
|
||||
|
@ -40,7 +40,7 @@ scoped[FieldSpecification.FieldOpFreeAlgebra] notation "[" φs "," φs' "]ₛca"
|
|||
|
||||
/-!
|
||||
|
||||
## The super commutor of different types of elements
|
||||
## The super commutator of different types of elements
|
||||
|
||||
-/
|
||||
|
||||
|
@ -257,7 +257,7 @@ lemma superCommuteF_anPartF_ofFieldOpF (φ φ' : 𝓕.FieldOp) :
|
|||
## Mul equal superCommuteF
|
||||
|
||||
Lemmas which rewrite a multiplication of two elements of the algebra as their commuted
|
||||
multiplication with a sign plus the super commutor.
|
||||
multiplication with a sign plus the super commutator.
|
||||
|
||||
-/
|
||||
lemma ofCrAnListF_mul_ofCrAnListF_eq_superCommuteF (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
|
@ -328,7 +328,7 @@ lemma ofCrAnListF_mul_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnField
|
|||
|
||||
/-!
|
||||
|
||||
## Symmetry of the super commutor.
|
||||
## Symmetry of the super commutator.
|
||||
|
||||
-/
|
||||
|
||||
|
@ -359,7 +359,7 @@ lemma superCommuteF_ofCrAnOpF_ofCrAnOpF_symm (φ φ' : 𝓕.CrAnFieldOp) :
|
|||
|
||||
/-!
|
||||
|
||||
## Splitting the super commutor on lists into sums.
|
||||
## Splitting the super commutator on lists into sums.
|
||||
|
||||
-/
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue