refactor: Generalize Wick contract

This commit is contained in:
jstoobysmith 2024-12-03 15:17:52 +00:00
parent e9dc7c6de0
commit b57e042f1a
3 changed files with 108 additions and 111 deletions

View file

@ -30,9 +30,9 @@ informal_definition WickAlgebra where
Modifications of this may be needed.
A structure with the following data:
- A super algebra A.
- A map from `ψ : 𝓔 × SpaceTime → A` where 𝓔 are field colors.
- A map `ψc : 𝓔 × SpaceTime → A`.
- A map `ψd : 𝓔 × SpaceTime → A`.
- A map from `ψ : S.𝓯 × SpaceTime → A` where S.𝓯 are field colors.
- A map `ψc : S.𝓯 × SpaceTime → A`.
- A map `ψd : S.𝓯 × SpaceTime → A`.
Subject to the conditions:
- The sum of `ψc` and `ψd` is `ψ`.
- All maps land on homogeneous elements.
@ -40,8 +40,8 @@ informal_definition WickAlgebra where
- The super-commutator of two fields is always in the
center of the algebra.
Asympotic states:
- `φc : 𝓔 × SpaceTime → A`. The creation asympotic state (incoming).
- `φd : 𝓔 × SpaceTime → A`. The destruction asympotic state (outgoing).
- `φc : S.𝓯 × SpaceTime → A`. The creation asympotic state (incoming).
- `φd : S.𝓯 × SpaceTime → A`. The destruction asympotic state (outgoing).
Subject to the conditions:
...
"
@ -88,18 +88,18 @@ informal_definition normalOrder where
end WickMonomial
informal_definition asymptoicContract where
math :≈ "Given two `i j : 𝓔 × SpaceTime`, the super-commutator [φd(i), ψ(j)]."
math :≈ "Given two `i j : S.𝓯 × SpaceTime`, the super-commutator [φd(i), ψ(j)]."
ref :≈ "See e.g. http://www.dylanjtemples.com:82/solutions/QFT_Solution_I-6.pdf"
informal_definition contractAsymptotic where
math :≈ "Given two `i j : 𝓔 × SpaceTime`, the super-commutator [ψ(i), φc(j)]."
math :≈ "Given two `i j : S.𝓯 × SpaceTime`, the super-commutator [ψ(i), φc(j)]."
informal_definition asymptoicContractAsymptotic where
math :≈ "Given two `i j : 𝓔 × SpaceTime`, the super-commutator
math :≈ "Given two `i j : S.𝓯 × SpaceTime`, the super-commutator
[φd(i), φc(j)]."
informal_definition contraction where
math :≈ "Given two `i j : 𝓔 × SpaceTime`, the element of WickAlgebra
math :≈ "Given two `i j : S.𝓯 × SpaceTime`, the element of WickAlgebra
defined by subtracting the normal ordering of `ψ i ψ j` from the time-ordering of
`ψ i ψ j`."
deps :≈ [``WickAlgebra, ``WickMonomial]