Merge pull request #151 from HEPLean/TwoHiggsDoublet
refactor: Higgs potential
This commit is contained in:
commit
b8ac1d4891
4 changed files with 276 additions and 251 deletions
|
@ -79,19 +79,19 @@ lemma swap_fields : P.toFun Φ1 Φ2 =
|
|||
|
||||
/-- If `Φ₂` is zero the potential reduces to the Higgs potential on `Φ₁`. -/
|
||||
lemma right_zero : P.toFun Φ1 0 =
|
||||
StandardModel.HiggsField.potential (- P.m₁₁2) (P.𝓵₁/2) Φ1 := by
|
||||
(HiggsField.Potential.mk (- P.m₁₁2) (P.𝓵₁/2)).toFun Φ1 := by
|
||||
funext x
|
||||
simp only [toFun, normSq, ContMDiffSection.coe_zero, Pi.zero_apply, norm_zero, ne_eq,
|
||||
OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, mul_zero, add_zero, innerProd_right_zero,
|
||||
innerProd_left_zero, Complex.zero_re, sub_zero, one_div, Complex.ofReal_pow,
|
||||
Complex.ofReal_zero, potential, neg_neg, add_right_inj, mul_eq_mul_right_iff, pow_eq_zero_iff,
|
||||
norm_eq_zero, or_self_right]
|
||||
Complex.ofReal_zero, neg_neg, add_right_inj, mul_eq_mul_right_iff, pow_eq_zero_iff,
|
||||
norm_eq_zero, HiggsField.Potential.toFun, or_self_right]
|
||||
ring_nf
|
||||
simp only [true_or]
|
||||
|
||||
/-- If `Φ₁` is zero the potential reduces to the Higgs potential on `Φ₂`. -/
|
||||
lemma left_zero : P.toFun 0 Φ2 =
|
||||
StandardModel.HiggsField.potential (- P.m₂₂2) (P.𝓵₂/2) Φ2 := by
|
||||
(HiggsField.Potential.mk (- P.m₂₂2) (P.𝓵₂/2)).toFun Φ2 := by
|
||||
rw [swap_fields, right_zero]
|
||||
|
||||
/-- Negating `Φ₁` is equivalent to negating `m₁₂2`, `𝓵₆` and `𝓵₇`. -/
|
||||
|
@ -114,23 +114,23 @@ lemma neg_right : P.toFun Φ1 (- Φ2)
|
|||
simp only [map_neg, RingHomCompTriple.comp_apply, RingHom.id_apply]
|
||||
|
||||
lemma left_eq_right : P.toFun Φ1 Φ1 =
|
||||
StandardModel.HiggsField.potential (- P.m₁₁2 - P.m₂₂2 + 2 * P.m₁₂2.re)
|
||||
(P.𝓵₁/2 + P.𝓵₂/2 + P.𝓵₃ + P.𝓵₄ + P.𝓵₅.re + 2 * P.𝓵₆.re + 2 * P.𝓵₇.re) Φ1 := by
|
||||
(HiggsField.Potential.mk (- P.m₁₁2 - P.m₂₂2 + 2 * P.m₁₂2.re)
|
||||
(P.𝓵₁/2 + P.𝓵₂/2 + P.𝓵₃ + P.𝓵₄ + P.𝓵₅.re + 2 * P.𝓵₆.re + 2 * P.𝓵₇.re)).toFun Φ1 := by
|
||||
funext x
|
||||
simp only [toFun, normSq, innerProd_self_eq_normSq, Complex.ofReal_pow, Complex.add_re,
|
||||
Complex.mul_re, normSq_apply_re_self, normSq_apply_im_zero, mul_zero, sub_zero, Complex.conj_re,
|
||||
Complex.conj_im, one_div, norm_pow, Complex.norm_real, norm_norm, Complex.inv_re,
|
||||
Complex.re_ofNat, Complex.normSq_ofNat, div_self_mul_self', Complex.inv_im, Complex.im_ofNat,
|
||||
neg_zero, zero_div, zero_mul, Complex.mul_im, add_zero, mul_neg, neg_mul, sub_neg_eq_add,
|
||||
sub_add_add_cancel, zero_add, potential, neg_add_rev, neg_sub]
|
||||
sub_add_add_cancel, zero_add, HiggsField.Potential.toFun, neg_add_rev, neg_sub]
|
||||
ring_nf
|
||||
erw [show ((Complex.ofReal ‖Φ1 x‖) ^ 4).re = ‖Φ1 x‖ ^ 4 by
|
||||
erw [← Complex.ofReal_pow]; rfl]
|
||||
ring
|
||||
|
||||
lemma left_eq_neg_right : P.toFun Φ1 (- Φ1) =
|
||||
StandardModel.HiggsField.potential (- P.m₁₁2 - P.m₂₂2 - 2 * P.m₁₂2.re)
|
||||
(P.𝓵₁/2 + P.𝓵₂/2 + P.𝓵₃ + P.𝓵₄ + P.𝓵₅.re - 2 * P.𝓵₆.re - 2 * P.𝓵₇.re) Φ1 := by
|
||||
(HiggsField.Potential.mk (- P.m₁₁2 - P.m₂₂2 - 2 * P.m₁₂2.re)
|
||||
(P.𝓵₁/2 + P.𝓵₂/2 + P.𝓵₃ + P.𝓵₄ + P.𝓵₅.re - 2 * P.𝓵₆.re - 2 * P.𝓵₇.re)).toFun Φ1 := by
|
||||
rw [neg_right, left_eq_right]
|
||||
simp_all only [Complex.neg_re, mul_neg]
|
||||
rfl
|
||||
|
@ -153,7 +153,7 @@ section IsBounded
|
|||
variable {P : Potential}
|
||||
|
||||
lemma isBounded_right_zero (h : P.IsBounded) :
|
||||
StandardModel.HiggsField.potential.IsBounded (- P.m₁₁2) (P.𝓵₁/2) := by
|
||||
(HiggsField.Potential.mk (- P.m₁₁2) (P.𝓵₁/2)).IsBounded := by
|
||||
obtain ⟨c, hc⟩ := h
|
||||
use c
|
||||
intro Φ x
|
||||
|
@ -162,7 +162,7 @@ lemma isBounded_right_zero (h : P.IsBounded) :
|
|||
exact hc1
|
||||
|
||||
lemma isBounded_left_zero (h : P.IsBounded) :
|
||||
StandardModel.HiggsField.potential.IsBounded (- P.m₂₂2) (P.𝓵₂/2) := by
|
||||
(HiggsField.Potential.mk (- P.m₂₂2) (P.𝓵₂/2)).IsBounded := by
|
||||
obtain ⟨c, hc⟩ := h
|
||||
use c
|
||||
intro Φ x
|
||||
|
@ -173,38 +173,36 @@ lemma isBounded_left_zero (h : P.IsBounded) :
|
|||
lemma isBounded_𝓵₁_nonneg (h : P.IsBounded) :
|
||||
0 ≤ P.𝓵₁ := by
|
||||
have h1 := isBounded_right_zero h
|
||||
have h2 := StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
|
||||
have h2 := HiggsField.Potential.isBounded_𝓵_nonneg _ h1
|
||||
simp only at h2
|
||||
linarith
|
||||
|
||||
lemma isBounded_𝓵₂_nonneg (h : P.IsBounded) :
|
||||
0 ≤ P.𝓵₂ := by
|
||||
have h1 := isBounded_left_zero h
|
||||
have h2 := StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
|
||||
have h2 := HiggsField.Potential.isBounded_𝓵_nonneg _ h1
|
||||
simp only at h2
|
||||
linarith
|
||||
|
||||
lemma isBounded_of_left_eq_right (h : P.IsBounded) :
|
||||
0 ≤ P.𝓵₁/2 + P.𝓵₂/2 + P.𝓵₃ + P.𝓵₄ + P.𝓵₅.re + 2 * P.𝓵₆.re + 2 * P.𝓵₇.re := by
|
||||
obtain ⟨c, hc⟩ := h
|
||||
have h1 : StandardModel.HiggsField.potential.IsBounded (- P.m₁₁2 - P.m₂₂2 + 2 * P.m₁₂2.re)
|
||||
(P.𝓵₁/2 + P.𝓵₂/2 + P.𝓵₃ + P.𝓵₄ + P.𝓵₅.re + 2 * P.𝓵₆.re + 2 * P.𝓵₇.re) := by
|
||||
use c
|
||||
intro Φ x
|
||||
have hc1 := hc Φ Φ x
|
||||
rw [left_eq_right] at hc1
|
||||
exact hc1
|
||||
exact StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
|
||||
refine (HiggsField.Potential.mk (- P.m₁₁2 - P.m₂₂2 + 2 * P.m₁₂2.re)
|
||||
(P.𝓵₁/2 + P.𝓵₂/2 + P.𝓵₃ + P.𝓵₄ + P.𝓵₅.re + 2 * P.𝓵₆.re + 2 * P.𝓵₇.re)).isBounded_𝓵_nonneg
|
||||
⟨c, fun Φ x => ?_⟩
|
||||
have hc1 := hc Φ Φ x
|
||||
rw [left_eq_right] at hc1
|
||||
exact hc1
|
||||
|
||||
lemma isBounded_of_left_eq_neg_right (h : P.IsBounded) :
|
||||
0 ≤ P.𝓵₁/2 + P.𝓵₂/2 + P.𝓵₃ + P.𝓵₄ + P.𝓵₅.re - 2 * P.𝓵₆.re - 2 * P.𝓵₇.re := by
|
||||
obtain ⟨c, hc⟩ := h
|
||||
have h1 : StandardModel.HiggsField.potential.IsBounded (- P.m₁₁2 - P.m₂₂2 - 2 * P.m₁₂2.re)
|
||||
(P.𝓵₁/2 + P.𝓵₂/2 + P.𝓵₃ + P.𝓵₄ + P.𝓵₅.re - 2 * P.𝓵₆.re - 2 * P.𝓵₇.re) := by
|
||||
use c
|
||||
intro Φ x
|
||||
have hc1 := hc Φ (- Φ) x
|
||||
rw [left_eq_neg_right] at hc1
|
||||
exact hc1
|
||||
exact StandardModel.HiggsField.potential.isBounded_𝓵_nonneg h1
|
||||
refine (HiggsField.Potential.mk (- P.m₁₁2 - P.m₂₂2 - 2 * P.m₁₂2.re)
|
||||
(P.𝓵₁/2 + P.𝓵₂/2 + P.𝓵₃ + P.𝓵₄ + P.𝓵₅.re - 2 * P.𝓵₆.re - 2 * P.𝓵₇.re)).isBounded_𝓵_nonneg
|
||||
⟨c, fun Φ x => ?_⟩
|
||||
have hc1 := hc Φ (- Φ) x
|
||||
rw [left_eq_neg_right] at hc1
|
||||
exact hc1
|
||||
|
||||
lemma nonneg_sum_𝓵₁_to_𝓵₅_of_isBounded (h : P.IsBounded) :
|
||||
0 ≤ P.𝓵₁/2 + P.𝓵₂/2 + P.𝓵₃ + P.𝓵₄ + P.𝓵₅.re := by
|
||||
|
|
|
@ -170,6 +170,9 @@ lemma isConst_iff_of_higgsVec (Φ : HiggsField) : Φ.IsConst ↔ ∃ (φ : Higgs
|
|||
vector is the given real number. -/
|
||||
def ofReal (a : ℝ) : HiggsField := (HiggsVec.ofReal a).toField
|
||||
|
||||
/-- The higgs field which is all zero. -/
|
||||
def zero : HiggsField := ofReal 0
|
||||
|
||||
end HiggsField
|
||||
|
||||
end
|
||||
|
|
|
@ -169,12 +169,11 @@ theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
|
|||
∃ (g : GaugeGroup), rep g φ = ![Complex.ofReal ‖φ‖, 0] := by
|
||||
obtain ⟨g, h⟩ := rotate_fst_zero_snd_real φ
|
||||
let P : GaugeGroup := ⟨1, ⟨!![0, 1; -1, 0], by
|
||||
rw [@mem_specialUnitaryGroup_iff]
|
||||
rw [mem_specialUnitaryGroup_iff]
|
||||
apply And.intro
|
||||
· rw [mem_unitaryGroup_iff, star_eq_conjTranspose]
|
||||
ext i j
|
||||
rw [Matrix.mul_apply]
|
||||
rw [@Fin.sum_univ_two]
|
||||
rw [Matrix.mul_apply, Fin.sum_univ_two]
|
||||
fin_cases i <;> fin_cases j
|
||||
<;> simp
|
||||
· simp [det_fin_two]⟩, 1⟩
|
||||
|
|
|
@ -32,117 +32,153 @@ open SpaceTime
|
|||
|
||||
-/
|
||||
|
||||
/-- The Higgs potential of the form `- μ² * |φ|² + 𝓵 * |φ|⁴`. -/
|
||||
@[simp]
|
||||
def potential (μ2 𝓵 : ℝ) (φ : HiggsField) (x : SpaceTime) : ℝ :=
|
||||
- μ2 * ‖φ‖_H ^ 2 x + 𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x
|
||||
/-- The parameters of the Higgs potential. -/
|
||||
structure Potential where
|
||||
/-- The mass-squared of the Higgs boson. -/
|
||||
μ2 : ℝ
|
||||
/-- The quartic coupling of the Higgs boson. Usually denoted λ. -/
|
||||
𝓵 : ℝ
|
||||
|
||||
/-!
|
||||
namespace Potential
|
||||
|
||||
## Smoothness of the potential
|
||||
variable (P : Potential)
|
||||
|
||||
-/
|
||||
/-- The function corresponding to the Higgs potential. -/
|
||||
def toFun (φ : HiggsField) (x : SpaceTime) : ℝ :=
|
||||
- P.μ2 * ‖φ‖_H ^ 2 x + P.𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x
|
||||
|
||||
lemma potential_smooth (μSq lambda : ℝ) (φ : HiggsField) :
|
||||
Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) (fun x => φ.potential μSq lambda x) := by
|
||||
simp only [potential, normSq, neg_mul]
|
||||
/-- The potential is smooth. -/
|
||||
lemma toFun_smooth (φ : HiggsField) :
|
||||
Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) (fun x => P.toFun φ x) := by
|
||||
simp only [toFun, normSq, neg_mul]
|
||||
exact (smooth_const.smul φ.normSq_smooth).neg.add
|
||||
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
|
||||
|
||||
namespace potential
|
||||
/-- The Higgs potential formed by negating the mass squared and the quartic coupling. -/
|
||||
def neg : Potential where
|
||||
μ2 := - P.μ2
|
||||
𝓵 := - P.𝓵
|
||||
|
||||
@[simp]
|
||||
lemma toFun_neg (φ : HiggsField) (x : SpaceTime) : P.neg.toFun φ x = - P.toFun φ x := by
|
||||
simp [neg, toFun]
|
||||
ring
|
||||
|
||||
@[simp]
|
||||
lemma μ2_neg : P.neg.μ2 = - P.μ2 := by rfl
|
||||
|
||||
@[simp]
|
||||
lemma 𝓵_neg : P.neg.𝓵 = - P.𝓵 := by rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Basic properties
|
||||
|
||||
-/
|
||||
|
||||
lemma complete_square (μ2 𝓵 : ℝ) (h : 𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
potential μ2 𝓵 φ x = 𝓵 * (‖φ‖_H ^ 2 x - μ2 / (2 * 𝓵)) ^ 2 - μ2 ^ 2 / (4 * 𝓵) := by
|
||||
simp only [potential]
|
||||
@[simp]
|
||||
lemma toFun_zero (x : SpaceTime) : P.toFun HiggsField.zero x = 0 := by
|
||||
simp [toFun, zero, ofReal]
|
||||
|
||||
lemma complete_square (h : P.𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
P.toFun φ x = P.𝓵 * (‖φ‖_H ^ 2 x - P.μ2 / (2 * P.𝓵)) ^ 2 - P.μ2 ^ 2 / (4 * P.𝓵) := by
|
||||
simp only [toFun]
|
||||
field_simp
|
||||
ring
|
||||
|
||||
lemma as_quad (μ2 𝓵 : ℝ) (φ : HiggsField) (x : SpaceTime) :
|
||||
𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x + (- μ2) * ‖φ‖_H ^ 2 x + (- potential μ2 𝓵 φ x) = 0 := by
|
||||
simp only [normSq, neg_mul, potential, neg_add_rev, neg_neg]
|
||||
lemma as_quad (φ : HiggsField) (x : SpaceTime) :
|
||||
P.𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x + (- P.μ2) * ‖φ‖_H ^ 2 x + (- P.toFun φ x) = 0 := by
|
||||
simp only [normSq, neg_mul, toFun, neg_add_rev, neg_neg]
|
||||
ring
|
||||
|
||||
lemma toFun_eq_zero_iff (h : P.𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
P.toFun φ x = 0 ↔ φ x = 0 ∨ ‖φ‖_H ^ 2 x = P.μ2 / P.𝓵 := by
|
||||
refine Iff.intro (fun hV => ?_) (fun hD => ?_)
|
||||
· have h1 := P.as_quad φ x
|
||||
rw [hV] at h1
|
||||
have h2 : ‖φ‖_H ^ 2 x * (P.𝓵 * ‖φ‖_H ^ 2 x + - P.μ2) = 0 := by
|
||||
linear_combination h1
|
||||
simp only [normSq, mul_eq_zero, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff,
|
||||
norm_eq_zero] at h2
|
||||
cases' h2 with h2 h2
|
||||
· simp_all
|
||||
· apply Or.inr
|
||||
field_simp at h2 ⊢
|
||||
ring_nf
|
||||
linear_combination h2
|
||||
· cases' hD with hD hD
|
||||
· simp [toFun, hD]
|
||||
· simp only [toFun, neg_mul]
|
||||
rw [hD]
|
||||
field_simp
|
||||
|
||||
/-!
|
||||
|
||||
## The descriminant
|
||||
|
||||
-/
|
||||
|
||||
/-- The discrimiant of the quadratic equation formed by the Higgs potential. -/
|
||||
def quadDiscrim (φ : HiggsField) (x : SpaceTime) : ℝ := discrim P.𝓵 (- P.μ2) (- P.toFun φ x)
|
||||
|
||||
/-- The discriminant of the quadratic formed by the potential is non-negative. -/
|
||||
lemma discrim_nonneg (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
0 ≤ discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) := by
|
||||
have h1 := as_quad μ2 𝓵 φ x
|
||||
lemma quadDiscrim_nonneg (h : P.𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
0 ≤ P.quadDiscrim φ x := by
|
||||
have h1 := P.as_quad φ x
|
||||
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
|
||||
· simp only [h1, ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
exact sq_nonneg (2 * 𝓵 * ‖φ‖_H ^ 2 x + - μ2)
|
||||
· simp only [h1, ne_eq, quadDiscrim, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
exact sq_nonneg (2 * P.𝓵 * ‖φ‖_H ^ 2 x + - P.μ2)
|
||||
· exact h
|
||||
|
||||
lemma discrim_eq_sqrt_discrim_mul_self (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 ≠ 0) (φ : HiggsField)
|
||||
(x : SpaceTime) :
|
||||
discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) = Real.sqrt (discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x)) *
|
||||
Real.sqrt (discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x)) := by
|
||||
refine Eq.symm (Real.mul_self_sqrt ?h)
|
||||
exact discrim_nonneg μ2 h φ x
|
||||
lemma quadDiscrim_eq_sqrt_mul_sqrt (h : P.𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
P.quadDiscrim φ x = Real.sqrt (P.quadDiscrim φ x) * Real.sqrt (P.quadDiscrim φ x) :=
|
||||
(Real.mul_self_sqrt (P.quadDiscrim_nonneg h φ x)).symm
|
||||
|
||||
lemma eq_zero_at (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime)
|
||||
(hV : potential μ2 𝓵 φ x = 0) : φ x = 0 ∨ ‖φ‖_H ^ 2 x = μ2 / 𝓵 := by
|
||||
have h1 := as_quad μ2 𝓵 φ x
|
||||
rw [hV] at h1
|
||||
have h2 : ‖φ‖_H ^ 2 x * (𝓵 * ‖φ‖_H ^ 2 x + - μ2) = 0 := by
|
||||
linear_combination h1
|
||||
simp only [normSq, mul_eq_zero, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff,
|
||||
norm_eq_zero] at h2
|
||||
cases' h2 with h2 h2
|
||||
· simp_all
|
||||
· apply Or.inr
|
||||
field_simp at h2 ⊢
|
||||
ring_nf
|
||||
linear_combination h2
|
||||
lemma quadDiscrim_eq_zero_iff (h : P.𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
P.quadDiscrim φ x = 0 ↔ P.toFun φ x = - P.μ2 ^ 2 / (4 * P.𝓵) := by
|
||||
rw [quadDiscrim, discrim]
|
||||
refine Iff.intro (fun hD => ?_) (fun hV => ?_)
|
||||
· field_simp
|
||||
linear_combination hD
|
||||
· field_simp [hV]
|
||||
|
||||
/-- When `0 < 𝓵`, the potential has a lower bound. -/
|
||||
lemma bounded_below (μ2 : ℝ) {𝓵 : ℝ} (h𝓵 : 0 < 𝓵) (φ : HiggsField) (x : SpaceTime) :
|
||||
- μ2 ^ 2 / (4 * 𝓵) ≤ potential μ2 𝓵 φ x := by
|
||||
have h1 := discrim_nonneg μ2 (ne_of_lt h𝓵).symm φ x
|
||||
simp only [discrim, even_two, Even.neg_pow, normSq, neg_mul, neg_add_rev, neg_neg] at h1
|
||||
lemma quadDiscrim_eq_zero_iff_normSq (h : P.𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
P.quadDiscrim φ x = 0 ↔ ‖φ‖_H ^ 2 x = P.μ2 / (2 * P.𝓵) := by
|
||||
rw [P.quadDiscrim_eq_zero_iff h]
|
||||
refine Iff.intro (fun hV => ?_) (fun hF => ?_)
|
||||
· have h1 := P.as_quad φ x
|
||||
rw [quadratic_eq_zero_iff_of_discrim_eq_zero h
|
||||
((P.quadDiscrim_eq_zero_iff h φ x).mpr hV)] at h1
|
||||
simp_rw [h1, neg_neg]
|
||||
· rw [toFun, hF]
|
||||
field_simp
|
||||
ring
|
||||
|
||||
lemma neg_𝓵_quadDiscrim_zero_bound (h : P.𝓵 < 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
P.toFun φ x ≤ - P.μ2 ^ 2 / (4 * P.𝓵) := by
|
||||
have h1 := P.quadDiscrim_nonneg (ne_of_lt h) φ x
|
||||
simp only [quadDiscrim, discrim, even_two, Even.neg_pow] at h1
|
||||
ring_nf at h1
|
||||
rw [← neg_le_iff_add_nonneg'] at h1
|
||||
rw [show 𝓵 * potential μ2 𝓵 φ x * 4 = (4 * 𝓵) * potential μ2 𝓵 φ x by ring] at h1
|
||||
have h2 := (div_le_iff₀' (by simp [h𝓵] : 0 < 4 * 𝓵)).mpr h1
|
||||
rw [← neg_le_iff_add_nonneg',
|
||||
show P.𝓵 * P.toFun φ x * 4 = (- 4 * P.𝓵) * (- P.toFun φ x) by ring] at h1
|
||||
have h2 := le_neg_of_le_neg <| (div_le_iff₀' (by linarith : 0 < - 4 * P.𝓵)).mpr h1
|
||||
ring_nf at h2 ⊢
|
||||
exact h2
|
||||
|
||||
/-- When `𝓵 < 0`, the potential has an upper bound. -/
|
||||
lemma bounded_above (μ2 : ℝ) {𝓵 : ℝ} (h𝓵 : 𝓵 < 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
potential μ2 𝓵 φ x ≤ - μ2 ^ 2 / (4 * 𝓵) := by
|
||||
have h1 := discrim_nonneg μ2 (ne_of_lt h𝓵) φ x
|
||||
simp only [discrim, even_two, Even.neg_pow, normSq, neg_mul, neg_add_rev, neg_neg] at h1
|
||||
ring_nf at h1
|
||||
rw [← neg_le_iff_add_nonneg'] at h1
|
||||
rw [show 𝓵 * potential μ2 𝓵 φ x * 4 = (- 4 * 𝓵) * (- potential μ2 𝓵 φ x) by ring] at h1
|
||||
have h2 := le_neg_of_le_neg <| (div_le_iff₀' (by linarith : 0 < - 4 * 𝓵)).mpr h1
|
||||
ring_nf at h2 ⊢
|
||||
exact h2
|
||||
lemma pos_𝓵_quadDiscrim_zero_bound (h : 0 < P.𝓵) (φ : HiggsField) (x : SpaceTime) :
|
||||
- P.μ2 ^ 2 / (4 * P.𝓵) ≤ P.toFun φ x := by
|
||||
have h1 := P.neg.neg_𝓵_quadDiscrim_zero_bound (by simpa [neg] using h) φ x
|
||||
simp only [toFun_neg, μ2_neg, even_two, Even.neg_pow, 𝓵_neg, mul_neg, neg_div_neg_eq] at h1
|
||||
rw [neg_le, neg_div'] at h1
|
||||
exact h1
|
||||
|
||||
lemma discrim_eq_zero_of_eq_bound (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime)
|
||||
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||||
discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) = 0 := by
|
||||
rw [discrim, hV]
|
||||
field_simp
|
||||
|
||||
lemma discrim_ge_zero_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 < 0) (c : ℝ) :
|
||||
0 ≤ discrim 𝓵 (- μ2) (- c) ↔ c ≤ - μ2 ^ 2 / (4 * 𝓵) := by
|
||||
rw [discrim]
|
||||
simp only [even_two, Even.neg_pow, mul_neg, sub_neg_eq_add]
|
||||
rw [← neg_le_iff_add_nonneg', show 4 * 𝓵 * c = (- 4 * 𝓵) * (- c) by ring,
|
||||
← (div_le_iff₀' (by linarith : 0 < - 4 * 𝓵)), le_neg]
|
||||
ring_nf
|
||||
|
||||
lemma pot_le_zero_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 < 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
(0 < μ2 ∧ potential μ2 𝓵 φ x ≤ 0) ∨ μ2 ≤ 0 := by
|
||||
by_cases hμ2 : μ2 ≤ 0
|
||||
lemma neg_𝓵_toFun_neg (h : P.𝓵 < 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
(0 < P.μ2 ∧ P.toFun φ x ≤ 0) ∨ P.μ2 ≤ 0 := by
|
||||
by_cases hμ2 : P.μ2 ≤ 0
|
||||
· simp [hμ2]
|
||||
simp only [potential, normSq, neg_mul, neg_add_le_iff_le_add, add_zero, hμ2, or_false]
|
||||
simp only [toFun, normSq, neg_mul, neg_add_le_iff_le_add, add_zero, hμ2, or_false]
|
||||
apply And.intro (lt_of_not_ge hμ2)
|
||||
have h1 : 0 ≤ μ2 * ‖φ x‖ ^ 2 := by
|
||||
have h1 : 0 ≤ P.μ2 * ‖φ x‖ ^ 2 := by
|
||||
refine Left.mul_nonneg ?ha ?hb
|
||||
· exact le_of_not_ge hμ2
|
||||
· exact sq_nonneg ‖φ x‖
|
||||
|
@ -150,26 +186,29 @@ lemma pot_le_zero_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h : 𝓵 < 0) (φ : Higg
|
|||
exact mul_nonpos_of_nonpos_of_nonneg (mul_nonpos_of_nonpos_of_nonneg (le_of_lt h)
|
||||
(sq_nonneg ‖φ x‖)) (sq_nonneg ‖φ x‖)
|
||||
|
||||
lemma exist_sol_iff_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h𝓵 : 𝓵 < 0) (c : ℝ) :
|
||||
(∃ φ x, potential μ2 𝓵 φ x = c) ↔ (0 < μ2 ∧ c ≤ 0) ∨
|
||||
(μ2 ≤ 0 ∧ c ≤ - μ2 ^ 2 / (4 * 𝓵)) := by
|
||||
lemma pos_𝓵_toFun_pos (h : 0 < P.𝓵) (φ : HiggsField) (x : SpaceTime) :
|
||||
(P.μ2 < 0 ∧ 0 ≤ P.toFun φ x) ∨ 0 ≤ P.μ2 := by
|
||||
simpa using P.neg.neg_𝓵_toFun_neg (by simpa using h) φ x
|
||||
|
||||
lemma neg_𝓵_sol_exists_iff (h𝓵 : P.𝓵 < 0) (c : ℝ) : (∃ φ x, P.toFun φ x = c) ↔ (0 < P.μ2 ∧ c ≤ 0) ∨
|
||||
(P.μ2 ≤ 0 ∧ c ≤ - P.μ2 ^ 2 / (4 * P.𝓵)) := by
|
||||
refine Iff.intro (fun ⟨φ, x, hV⟩ => ?_) (fun h => ?_)
|
||||
· rcases pot_le_zero_of_neg_𝓵 μ2 h𝓵 φ x with hr | hr
|
||||
· rcases P.neg_𝓵_toFun_neg h𝓵 φ x with hr | hr
|
||||
· rw [← hV]
|
||||
exact Or.inl hr
|
||||
· rw [← hV]
|
||||
exact Or.inr (And.intro hr (bounded_above μ2 h𝓵 φ x))
|
||||
· simp only [potential, neg_mul]
|
||||
exact Or.inr (And.intro hr (P.neg_𝓵_quadDiscrim_zero_bound h𝓵 φ x))
|
||||
· simp only [toFun, neg_mul]
|
||||
simp only [← sub_eq_zero, sub_zero]
|
||||
ring_nf
|
||||
let a := (μ2 - Real.sqrt (discrim 𝓵 (- μ2) (- c))) / (2 * 𝓵)
|
||||
let a := (P.μ2 - Real.sqrt (discrim P.𝓵 (- P.μ2) (- c))) / (2 * P.𝓵)
|
||||
have ha : 0 ≤ a := by
|
||||
simp only [discrim, even_two, Even.neg_pow, mul_neg, sub_neg_eq_add, a]
|
||||
rw [div_nonneg_iff]
|
||||
refine Or.inr (And.intro ?_ ?_)
|
||||
· rw [sub_nonpos]
|
||||
by_cases hμ : μ2 < 0
|
||||
· have h1 : 0 ≤ √(μ2 ^ 2 + 4 * 𝓵 * c) := Real.sqrt_nonneg (μ2 ^ 2 + 4 * 𝓵 * c)
|
||||
by_cases hμ : P.μ2 < 0
|
||||
· have h1 : 0 ≤ √(P.μ2 ^ 2 + 4 * P.𝓵 * c) := Real.sqrt_nonneg (P.μ2 ^ 2 + 4 * P.𝓵 * c)
|
||||
linarith
|
||||
· refine Real.le_sqrt_of_sq_le ?_
|
||||
rw [le_add_iff_nonneg_right]
|
||||
|
@ -179,31 +218,38 @@ lemma exist_sol_iff_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h𝓵 : 𝓵 < 0) (c :
|
|||
· linarith
|
||||
· rcases h with h | h
|
||||
· linarith
|
||||
· have h1 : μ2 = 0 := by linarith
|
||||
· have h1 : P.μ2 = 0 := by linarith
|
||||
rw [h1] at h
|
||||
simpa using h.2
|
||||
· linarith
|
||||
use (ofReal a)
|
||||
use 0
|
||||
rw [ofReal_normSq ha]
|
||||
trans 𝓵 * a * a + (- μ2) * a + (- c)
|
||||
trans P.𝓵 * a * a + (- P.μ2) * a + (- c)
|
||||
· ring
|
||||
have hd : 0 ≤ (discrim 𝓵 (-μ2) (-c)) := by
|
||||
have hd : 0 ≤ (discrim P.𝓵 (- P.μ2) (-c)) := by
|
||||
simp only [discrim, even_two, Even.neg_pow, mul_neg, sub_neg_eq_add]
|
||||
rcases h with h | h
|
||||
· refine Left.add_nonneg (sq_nonneg μ2) ?_
|
||||
· refine Left.add_nonneg (sq_nonneg P.μ2) ?_
|
||||
refine mul_nonneg_of_nonpos_of_nonpos ?_ h.2
|
||||
linarith
|
||||
· rw [← @neg_le_iff_add_nonneg']
|
||||
rw [← le_div_iff_of_neg']
|
||||
· exact h.2
|
||||
· linarith
|
||||
have hdd : discrim 𝓵 (-μ2) (-c) = Real.sqrt (discrim 𝓵 (-μ2) (-c))
|
||||
* Real.sqrt (discrim 𝓵 (-μ2) (-c)) := by
|
||||
have hdd : discrim P.𝓵 (- P.μ2) (-c) = Real.sqrt (discrim P.𝓵 (- P.μ2) (-c))
|
||||
* Real.sqrt (discrim P.𝓵 (- P.μ2) (-c)) := by
|
||||
exact (Real.mul_self_sqrt hd).symm
|
||||
refine (quadratic_eq_zero_iff (ne_of_gt h𝓵).symm hdd _).mpr ?_
|
||||
simp only [neg_neg, or_true, a]
|
||||
|
||||
lemma pos_𝓵_sol_exists_iff (h𝓵 : 0 < P.𝓵) (c : ℝ) : (∃ φ x, P.toFun φ x = c) ↔ (P.μ2 < 0 ∧ 0 ≤ c) ∨
|
||||
(0 ≤ P.μ2 ∧ - P.μ2 ^ 2 / (4 * P.𝓵) ≤ c) := by
|
||||
have h1 := P.neg.neg_𝓵_sol_exists_iff (by simpa using h𝓵) (- c)
|
||||
simp at h1
|
||||
rw [neg_le, neg_div'] at h1
|
||||
exact h1
|
||||
|
||||
/-!
|
||||
|
||||
## Boundness of the potential
|
||||
|
@ -211,18 +257,18 @@ lemma exist_sol_iff_of_neg_𝓵 (μ2 : ℝ) {𝓵 : ℝ} (h𝓵 : 𝓵 < 0) (c :
|
|||
-/
|
||||
|
||||
/-- The proposition on the coefficents for a potential to be bounded. -/
|
||||
def IsBounded (μ2 𝓵 : ℝ) : Prop :=
|
||||
∃ c, ∀ Φ x, c ≤ potential μ2 𝓵 Φ x
|
||||
def IsBounded : Prop :=
|
||||
∃ c, ∀ Φ x, c ≤ P.toFun Φ x
|
||||
|
||||
lemma isBounded_𝓵_nonneg {μ2 𝓵 : ℝ} (h : IsBounded μ2 𝓵) :
|
||||
0 ≤ 𝓵 := by
|
||||
lemma isBounded_𝓵_nonneg (h : P.IsBounded) :
|
||||
0 ≤ P.𝓵 := by
|
||||
by_contra hl
|
||||
rw [not_le] at hl
|
||||
obtain ⟨c, hc⟩ := h
|
||||
by_cases hμ : μ2 ≤ 0
|
||||
· by_cases hcz : c ≤ -μ2 ^ 2 / (4 * 𝓵)
|
||||
· have hcm1 : ∃ φ x, potential μ2 𝓵 φ x = c - 1 := by
|
||||
rw [propext (exist_sol_iff_of_neg_𝓵 μ2 hl (c - 1))]
|
||||
by_cases hμ : P.μ2 ≤ 0
|
||||
· by_cases hcz : c ≤ - P.μ2 ^ 2 / (4 * P.𝓵)
|
||||
· have hcm1 : ∃ φ x, P.toFun φ x = c - 1 := by
|
||||
rw [P.neg_𝓵_sol_exists_iff hl (c - 1)]
|
||||
apply Or.inr
|
||||
simp_all
|
||||
linarith
|
||||
|
@ -231,8 +277,8 @@ lemma isBounded_𝓵_nonneg {μ2 𝓵 : ℝ} (h : IsBounded μ2 𝓵) :
|
|||
rw [hφ] at hc2
|
||||
linarith
|
||||
· rw [not_le] at hcz
|
||||
have hcm1 : ∃ φ x, potential μ2 𝓵 φ x = -μ2 ^ 2 / (4 * 𝓵) - 1 := by
|
||||
rw [propext (exist_sol_iff_of_neg_𝓵 μ2 hl _)]
|
||||
have hcm1 : ∃ φ x, P.toFun φ x = - P.μ2 ^ 2 / (4 * P.𝓵) - 1 := by
|
||||
rw [P.neg_𝓵_sol_exists_iff hl _]
|
||||
apply Or.inr
|
||||
simp_all
|
||||
obtain ⟨φ, x, hφ⟩ := hcm1
|
||||
|
@ -241,8 +287,8 @@ lemma isBounded_𝓵_nonneg {μ2 𝓵 : ℝ} (h : IsBounded μ2 𝓵) :
|
|||
linarith
|
||||
· rw [not_le] at hμ
|
||||
by_cases hcz : c ≤ 0
|
||||
· have hcm1 : ∃ φ x, potential μ2 𝓵 φ x = c - 1 := by
|
||||
rw [propext (exist_sol_iff_of_neg_𝓵 μ2 hl (c - 1))]
|
||||
· have hcm1 : ∃ φ x, P.toFun φ x = c - 1 := by
|
||||
rw [P.neg_𝓵_sol_exists_iff hl (c - 1)]
|
||||
apply Or.inl
|
||||
simp_all
|
||||
linarith
|
||||
|
@ -250,8 +296,8 @@ lemma isBounded_𝓵_nonneg {μ2 𝓵 : ℝ} (h : IsBounded μ2 𝓵) :
|
|||
have hc2 := hc φ x
|
||||
rw [hφ] at hc2
|
||||
linarith
|
||||
· have hcm1 : ∃ φ x, potential μ2 𝓵 φ x = 0 := by
|
||||
rw [propext (exist_sol_iff_of_neg_𝓵 μ2 hl 0)]
|
||||
· have hcm1 : ∃ φ x, P.toFun φ x = 0 := by
|
||||
rw [P.neg_𝓵_sol_exists_iff hl 0]
|
||||
apply Or.inl
|
||||
simp_all
|
||||
obtain ⟨φ, x, hφ⟩ := hcm1
|
||||
|
@ -259,131 +305,110 @@ lemma isBounded_𝓵_nonneg {μ2 𝓵 : ℝ} (h : IsBounded μ2 𝓵) :
|
|||
rw [hφ] at hc2
|
||||
linarith
|
||||
|
||||
section lowerBound
|
||||
/-!
|
||||
|
||||
## Lower bound on potential
|
||||
|
||||
-/
|
||||
|
||||
variable (μ2 : ℝ) {𝓵 : ℝ} (h𝓵 : 0 < 𝓵)
|
||||
|
||||
include h𝓵
|
||||
/-- The second term of the potential is non-negative. -/
|
||||
lemma snd_term_nonneg (φ : HiggsField) (x : SpaceTime) :
|
||||
0 ≤ 𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x := by
|
||||
rw [mul_nonneg_iff]
|
||||
apply Or.inl
|
||||
simp_all only [normSq, gt_iff_lt, mul_nonneg_iff_of_pos_left, ge_iff_le, norm_nonneg, pow_nonneg,
|
||||
and_self]
|
||||
|
||||
lemma eq_zero_at_of_μSq_nonpos {μ2 : ℝ} (hμ2 : μ2 ≤ 0)
|
||||
(φ : HiggsField) (x : SpaceTime) (hV : potential μ2 𝓵 φ x = 0) : φ x = 0 := by
|
||||
cases' (eq_zero_at μ2 (ne_of_lt h𝓵).symm φ x hV) with h1 h1
|
||||
· exact h1
|
||||
· by_cases hμSqZ : μ2 = 0
|
||||
· simpa [hμSqZ] using h1
|
||||
· refine ((?_ : ¬ 0 ≤ μ2 / 𝓵) (?_)).elim
|
||||
· simp_all [div_nonneg_iff]
|
||||
intro h
|
||||
exact lt_imp_lt_of_le_imp_le (fun _ => h) (lt_of_le_of_ne hμ2 hμSqZ)
|
||||
· rw [← h1]
|
||||
exact normSq_nonneg φ x
|
||||
|
||||
lemma bounded_below_of_μSq_nonpos {μ2 : ℝ}
|
||||
(hμSq : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) : 0 ≤ potential μ2 𝓵 φ x := by
|
||||
refine add_nonneg ?_ (snd_term_nonneg h𝓵 φ x)
|
||||
field_simp [mul_nonpos_iff]
|
||||
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
||||
|
||||
end lowerBound
|
||||
|
||||
section MinimumOfPotential
|
||||
variable {𝓵 : ℝ}
|
||||
variable (μ2 : ℝ)
|
||||
variable (h𝓵 : 0 < 𝓵)
|
||||
lemma isBounded_of_𝓵_pos (h : 0 < P.𝓵) : P.IsBounded := by
|
||||
simp only [IsBounded]
|
||||
have h2 := P.pos_𝓵_quadDiscrim_zero_bound h
|
||||
by_contra hn
|
||||
simp at hn
|
||||
obtain ⟨φ, x, hx⟩ := hn (-P.μ2 ^ 2 / (4 * P.𝓵))
|
||||
have h2' := h2 φ x
|
||||
linarith
|
||||
|
||||
/-!
|
||||
|
||||
## Minima of potential
|
||||
## Minimum and maximum
|
||||
|
||||
-/
|
||||
|
||||
include h𝓵
|
||||
lemma normSq_of_eq_bound (φ : HiggsField) (x : SpaceTime)
|
||||
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||||
‖φ‖_H ^ 2 x = μ2 / (2 * 𝓵) := by
|
||||
have h1 := as_quad μ2 𝓵 φ x
|
||||
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _
|
||||
(discrim_eq_zero_of_eq_bound μ2 (ne_of_lt h𝓵).symm φ x hV)] at h1
|
||||
· simp_rw [h1, neg_neg]
|
||||
· exact ne_of_gt h𝓵
|
||||
lemma eq_zero_iff_of_μSq_nonpos_𝓵_pos (h𝓵 : 0 < P.𝓵) (hμ2 : P.μ2 ≤ 0) (φ : HiggsField)
|
||||
(x : SpaceTime) : P.toFun φ x = 0 ↔ φ x = 0 := by
|
||||
rw [P.toFun_eq_zero_iff (ne_of_lt h𝓵).symm]
|
||||
simp only [or_iff_left_iff_imp]
|
||||
intro h
|
||||
have h1 := div_nonpos_of_nonpos_of_nonneg hμ2 (le_of_lt h𝓵)
|
||||
rw [← h] at h1
|
||||
have hx := normSq_nonneg φ x
|
||||
have hx' : ‖φ‖_H ^ 2 x = 0 := by linarith
|
||||
simpa using hx'
|
||||
|
||||
lemma eq_bound_iff (φ : HiggsField) (x : SpaceTime) :
|
||||
potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵) ↔ ‖φ‖_H ^ 2 x = μ2 / (2 * 𝓵) :=
|
||||
Iff.intro (normSq_of_eq_bound μ2 h𝓵 φ x)
|
||||
(fun h ↦ by
|
||||
rw [potential, h]
|
||||
field_simp
|
||||
ring_nf)
|
||||
|
||||
lemma eq_bound_iff_of_μSq_nonpos {μ2 : ℝ}
|
||||
(hμ2 : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
potential μ2 𝓵 φ x = 0 ↔ φ x = 0 :=
|
||||
Iff.intro (fun h ↦ eq_zero_at_of_μSq_nonpos h𝓵 hμ2 φ x h)
|
||||
(fun h ↦ by simp [potential, h])
|
||||
|
||||
lemma eq_bound_IsMinOn (φ : HiggsField) (x : SpaceTime)
|
||||
(hv : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||||
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) := by
|
||||
lemma isMinOn_iff_of_μSq_nonpos_𝓵_pos (h𝓵 : 0 < P.𝓵) (hμ2 : P.μ2 ≤ 0) (φ : HiggsField)
|
||||
(x : SpaceTime) : IsMinOn (fun (φ, x) => P.toFun φ x) Set.univ (φ, x)
|
||||
↔ P.toFun φ x = 0 := by
|
||||
have h1 := P.pos_𝓵_sol_exists_iff h𝓵
|
||||
simp [hμ2] at h1
|
||||
rw [isMinOn_univ_iff]
|
||||
simp only [normSq, neg_mul, le_neg_add_iff_add_le, ge_iff_le, hv]
|
||||
exact fun (φ', x') ↦ bounded_below μ2 h𝓵 φ' x'
|
||||
simp only [Prod.forall]
|
||||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||||
· have h1' : P.toFun φ x ≤ 0 := by
|
||||
simpa using h HiggsField.zero 0
|
||||
have h1'' : 0 ≤ P.toFun φ x := by
|
||||
have hx := (h1 (P.toFun φ x)).mp ⟨φ, x, rfl⟩
|
||||
rcases hx with hx | hx
|
||||
· exact hx.2
|
||||
· have hμ2' : P.μ2 = 0 := by
|
||||
linarith
|
||||
simpa [hμ2'] using hx.2
|
||||
linarith
|
||||
· rw [h]
|
||||
intro φ' x'
|
||||
have h1' := (h1 (P.toFun φ' x')).mp ⟨φ', x', rfl⟩
|
||||
rcases h1' with h1' | h1'
|
||||
· exact h1'.2
|
||||
· have hμ2' : P.μ2 = 0 := by
|
||||
linarith
|
||||
simpa [hμ2'] using h1'.2
|
||||
|
||||
lemma eq_bound_IsMinOn_of_μSq_nonpos {μ2 : ℝ}
|
||||
(hμ2 : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) (hv : potential μ2 𝓵 φ x = 0) :
|
||||
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) := by
|
||||
lemma isMinOn_iff_field_of_μSq_nonpos_𝓵_pos (h𝓵 : 0 < P.𝓵) (hμ2 : P.μ2 ≤ 0) (φ : HiggsField)
|
||||
(x : SpaceTime) : IsMinOn (fun (φ, x) => P.toFun φ x) Set.univ (φ, x)
|
||||
↔ φ x = 0 := by
|
||||
rw [P.isMinOn_iff_of_μSq_nonpos_𝓵_pos h𝓵 hμ2 φ x]
|
||||
exact P.eq_zero_iff_of_μSq_nonpos_𝓵_pos h𝓵 hμ2 φ x
|
||||
|
||||
lemma isMinOn_iff_of_μSq_nonneg_𝓵_pos (h𝓵 : 0 < P.𝓵) (hμ2 : 0 ≤ P.μ2) (φ : HiggsField)
|
||||
(x : SpaceTime) : IsMinOn (fun (φ, x) => P.toFun φ x) Set.univ (φ, x) ↔
|
||||
P.toFun φ x = - P.μ2 ^ 2 / (4 * P.𝓵) := by
|
||||
have h1 := P.pos_𝓵_sol_exists_iff h𝓵
|
||||
simp [hμ2, not_lt.mpr hμ2] at h1
|
||||
rw [isMinOn_univ_iff]
|
||||
simp only [normSq, neg_mul, le_neg_add_iff_add_le, ge_iff_le, hv]
|
||||
exact fun (φ', x') ↦ bounded_below_of_μSq_nonpos h𝓵 hμ2 φ' x'
|
||||
simp only [Prod.forall]
|
||||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||||
· obtain ⟨φ', x', hφ'⟩ := (h1 (- P.μ2 ^ 2 / (4 * P.𝓵))).mpr (by rfl)
|
||||
have h' := h φ' x'
|
||||
rw [hφ'] at h'
|
||||
have hφ := (h1 (P.toFun φ x)).mp ⟨φ, x, rfl⟩
|
||||
linarith
|
||||
· intro φ' x'
|
||||
rw [h]
|
||||
exact (h1 (P.toFun φ' x')).mp ⟨φ', x', rfl⟩
|
||||
|
||||
lemma bound_reached_of_μSq_nonneg {μ2 : ℝ} (hμ2 : 0 ≤ μ2) :
|
||||
∃ (φ : HiggsField) (x : SpaceTime),
|
||||
potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵) := by
|
||||
use HiggsVec.toField ![√(μ2/(2 * 𝓵)), 0], 0
|
||||
refine (eq_bound_iff μ2 h𝓵 (HiggsVec.toField ![√(μ2/(2 * 𝓵)), 0]) 0).mpr ?_
|
||||
simp only [normSq, HiggsVec.toField, ContMDiffSection.coeFn_mk, PiLp.norm_sq_eq_of_L2,
|
||||
Nat.succ_eq_add_one, Nat.reduceAdd, norm_eq_abs, Fin.sum_univ_two, Fin.isValue, cons_val_zero,
|
||||
abs_ofReal, _root_.sq_abs, cons_val_one, head_cons, map_zero, ne_eq, OfNat.ofNat_ne_zero,
|
||||
not_false_eq_true, zero_pow, add_zero]
|
||||
field_simp [mul_pow]
|
||||
lemma isMinOn_iff_field_of_μSq_nonneg_𝓵_pos (h𝓵 : 0 < P.𝓵) (hμ2 : 0 ≤ P.μ2) (φ : HiggsField)
|
||||
(x : SpaceTime) : IsMinOn (fun (φ, x) => P.toFun φ x) Set.univ (φ, x) ↔
|
||||
‖φ‖_H ^ 2 x = P.μ2 /(2 * P.𝓵) := by
|
||||
rw [P.isMinOn_iff_of_μSq_nonneg_𝓵_pos h𝓵 hμ2 φ x, ← P.quadDiscrim_eq_zero_iff_normSq
|
||||
(Ne.symm (ne_of_lt h𝓵)), P.quadDiscrim_eq_zero_iff (Ne.symm (ne_of_lt h𝓵))]
|
||||
|
||||
lemma IsMinOn_iff_of_μSq_nonneg {μ2 : ℝ} (hμ2 : 0 ≤ μ2) :
|
||||
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) ↔
|
||||
‖φ‖_H ^ 2 x = μ2 /(2 * 𝓵) := by
|
||||
apply Iff.intro <;> rw [← eq_bound_iff μ2 h𝓵 φ]
|
||||
· intro h
|
||||
obtain ⟨φm, xm, hφ⟩ := bound_reached_of_μSq_nonneg h𝓵 hμ2
|
||||
have hm := isMinOn_univ_iff.mp h (φm, xm)
|
||||
simp only at hm
|
||||
rw [hφ] at hm
|
||||
exact (Real.partialOrder.le_antisymm _ _ (bounded_below μ2 h𝓵 φ x) hm).symm
|
||||
· exact eq_bound_IsMinOn μ2 h𝓵 φ x
|
||||
theorem isMinOn_iff_field_of_𝓵_pos (h𝓵 : 0 < P.𝓵) (φ : HiggsField) (x : SpaceTime) :
|
||||
IsMinOn (fun (φ, x) => P.toFun φ x) Set.univ (φ, x) ↔
|
||||
(0 ≤ P.μ2 ∧ ‖φ‖_H ^ 2 x = P.μ2 /(2 * P.𝓵)) ∨ (P.μ2 < 0 ∧ φ x = 0) := by
|
||||
by_cases hμ2 : 0 ≤ P.μ2
|
||||
· simpa [not_lt.mpr hμ2, hμ2] using P.isMinOn_iff_field_of_μSq_nonneg_𝓵_pos h𝓵 hμ2 φ x
|
||||
· simpa [hμ2, lt_of_not_ge hμ2] using P.isMinOn_iff_field_of_μSq_nonpos_𝓵_pos h𝓵 (by linarith) φ x
|
||||
|
||||
lemma IsMinOn_iff_of_μSq_nonpos {μ2 : ℝ} (hμ2 : μ2 ≤ 0) :
|
||||
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) ↔ φ x = 0 := by
|
||||
apply Iff.intro <;> rw [← eq_bound_iff_of_μSq_nonpos h𝓵 hμ2 φ]
|
||||
· intro h
|
||||
have h0 := isMinOn_univ_iff.mp h 0
|
||||
have h1 := bounded_below_of_μSq_nonpos h𝓵 hμ2 φ x
|
||||
simp only at h0
|
||||
rw [(eq_bound_iff_of_μSq_nonpos h𝓵 hμ2 0 0).mpr (by rfl)] at h0
|
||||
exact (Real.partialOrder.le_antisymm _ _ h1 h0).symm
|
||||
· exact eq_bound_IsMinOn_of_μSq_nonpos h𝓵 hμ2 φ x
|
||||
lemma isMaxOn_iff_isMinOn_neg (φ : HiggsField) (x : SpaceTime) :
|
||||
IsMaxOn (fun (φ, x) => P.toFun φ x) Set.univ (φ, x) ↔
|
||||
IsMinOn (fun (φ, x) => P.neg.toFun φ x) Set.univ (φ, x) := by
|
||||
simp only [toFun_neg]
|
||||
rw [isMaxOn_univ_iff, isMinOn_univ_iff]
|
||||
simp_all only [Prod.forall, neg_le_neg_iff]
|
||||
|
||||
end MinimumOfPotential
|
||||
lemma isMaxOn_iff_field_of_𝓵_neg (h𝓵 : P.𝓵 < 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
IsMaxOn (fun (φ, x) => P.toFun φ x) Set.univ (φ, x) ↔
|
||||
(P.μ2 ≤ 0 ∧ ‖φ‖_H ^ 2 x = P.μ2 /(2 * P.𝓵)) ∨ (0 < P.μ2 ∧ φ x = 0) := by
|
||||
rw [P.isMaxOn_iff_isMinOn_neg,
|
||||
P.neg.isMinOn_iff_field_of_𝓵_pos (by simpa using h𝓵)]
|
||||
simp
|
||||
|
||||
end potential
|
||||
end Potential
|
||||
|
||||
end HiggsField
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue