refactor: Update contractions
This commit is contained in:
parent
e4dafbd291
commit
b93ae33963
3 changed files with 29 additions and 30 deletions
|
@ -119,7 +119,7 @@ import HepLean.PerturbationTheory.FeynmanDiagrams.Instances.ComplexScalar
|
|||
import HepLean.PerturbationTheory.FeynmanDiagrams.Instances.Phi4
|
||||
import HepLean.PerturbationTheory.FeynmanDiagrams.Momentum
|
||||
import HepLean.PerturbationTheory.FieldStatistics
|
||||
import HepLean.PerturbationTheory.Wick.Contraction
|
||||
import HepLean.PerturbationTheory.Wick.Contractions
|
||||
import HepLean.PerturbationTheory.Wick.CreateAnnilateSection
|
||||
import HepLean.PerturbationTheory.Wick.KoszulOrder
|
||||
import HepLean.PerturbationTheory.Wick.OfList
|
||||
|
|
|
@ -12,35 +12,35 @@ import HepLean.PerturbationTheory.Wick.OperatorMap
|
|||
|
||||
namespace Wick
|
||||
|
||||
noncomputable section
|
||||
|
||||
open HepLean.List
|
||||
open FieldStatistic
|
||||
|
||||
variable {𝓕 : Type}
|
||||
|
||||
/-- Given a list of fields `l`, the type of pairwise-contractions associated with `l`
|
||||
which have the list `aux` uncontracted. -/
|
||||
inductive ContractionsAux {I : Type} : (l : List I) → (aux : List I) → Type
|
||||
inductive ContractionsAux : (l : List 𝓕) → (aux : List 𝓕) → Type
|
||||
| nil : ContractionsAux [] []
|
||||
| cons {l : List I} {aux : List I} {a : I} (i : Option (Fin aux.length)) :
|
||||
| cons {l : List 𝓕} {aux : List 𝓕} {a : 𝓕} (i : Option (Fin aux.length)) :
|
||||
ContractionsAux l aux → ContractionsAux (a :: l) (optionEraseZ aux a i)
|
||||
|
||||
/-- Given a list of fields `l`, the type of pairwise-contractions associated with `l`. -/
|
||||
def Contractions {I : Type} (l : List I) : Type := Σ aux, ContractionsAux l aux
|
||||
def Contractions (l : List 𝓕) : Type := Σ aux, ContractionsAux l aux
|
||||
|
||||
namespace Contractions
|
||||
|
||||
variable {I : Type} {l : List I} (c : Contractions l)
|
||||
variable {l : List 𝓕} (c : Contractions l)
|
||||
|
||||
/-- The list of uncontracted fields. -/
|
||||
def normalize : List I := c.1
|
||||
def normalize : List 𝓕 := c.1
|
||||
|
||||
lemma contractions_nil (a : Contractions ([] : List I)) : a = ⟨[], ContractionsAux.nil⟩ := by
|
||||
lemma contractions_nil (a : Contractions ([] : List 𝓕)) : a = ⟨[], ContractionsAux.nil⟩ := by
|
||||
cases a
|
||||
rename_i aux c
|
||||
cases c
|
||||
rfl
|
||||
|
||||
lemma contractions_single {i : I} (a : Contractions [i]) : a =
|
||||
lemma contractions_single {i : 𝓕} (a : Contractions [i]) : a =
|
||||
⟨[i], ContractionsAux.cons none ContractionsAux.nil⟩ := by
|
||||
cases a
|
||||
rename_i aux c
|
||||
|
@ -53,7 +53,7 @@ lemma contractions_single {i : I} (a : Contractions [i]) : a =
|
|||
exact Fin.elim0 x
|
||||
|
||||
/-- For the nil list of fields there is only one contraction. -/
|
||||
def nilEquiv : Contractions ([] : List I) ≃ Unit where
|
||||
def nilEquiv : Contractions ([] : List 𝓕) ≃ Unit where
|
||||
toFun _ := ()
|
||||
invFun _ := ⟨[], ContractionsAux.nil⟩
|
||||
left_inv a := Eq.symm (contractions_nil a)
|
||||
|
@ -62,7 +62,7 @@ def nilEquiv : Contractions ([] : List I) ≃ Unit where
|
|||
/-- The equivalence between contractions of `a :: l` and contractions of
|
||||
`Contractions l` paired with an optional element of `Fin (c.normalize).length` specifying
|
||||
what `a` contracts with if any. -/
|
||||
def consEquiv {a : I} {l : List I} :
|
||||
def consEquiv {a : 𝓕} {l : List 𝓕} :
|
||||
Contractions (a :: l) ≃ (c : Contractions l) × Option (Fin (c.normalize).length) where
|
||||
toFun c :=
|
||||
match c with
|
||||
|
@ -79,7 +79,7 @@ def consEquiv {a : I} {l : List I} :
|
|||
right_inv ci := by rfl
|
||||
|
||||
/-- The type of contractions is decidable. -/
|
||||
instance decidable : (l : List I) → DecidableEq (Contractions l)
|
||||
instance decidable : (l : List 𝓕) → DecidableEq (Contractions l)
|
||||
| [] => fun a b =>
|
||||
match a, b with
|
||||
| ⟨_, a⟩, ⟨_, b⟩ =>
|
||||
|
@ -92,7 +92,7 @@ instance decidable : (l : List I) → DecidableEq (Contractions l)
|
|||
Equiv.decidableEq consEquiv
|
||||
|
||||
/-- The type of contractions is finite. -/
|
||||
instance fintype : (l : List I) → Fintype (Contractions l)
|
||||
instance fintype : (l : List 𝓕) → Fintype (Contractions l)
|
||||
| [] => {
|
||||
elems := {⟨[], ContractionsAux.nil⟩}
|
||||
complete := by
|
||||
|
@ -107,42 +107,42 @@ instance fintype : (l : List I) → Fintype (Contractions l)
|
|||
|
||||
/-- A structure specifying when a type `I` and a map `f :I → Type` corresponds to
|
||||
the splitting of a fields `φ` into a creation `n` and annihlation part `p`. -/
|
||||
structure Splitting {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
|
||||
structure Splitting (f : 𝓕 → Type) [∀ i, Fintype (f i)]
|
||||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1] where
|
||||
/-- The creation part of the fields. The label `n` corresponds to the fact that
|
||||
in normal ordering these feilds get pushed to the negative (left) direction. -/
|
||||
𝓑n : I → (Σ i, f i)
|
||||
𝓑n : 𝓕 → (Σ i, f i)
|
||||
/-- The annhilation part of the fields. The label `p` corresponds to the fact that
|
||||
in normal ordering these feilds get pushed to the positive (right) direction. -/
|
||||
𝓑p : I → (Σ i, f i)
|
||||
𝓑p : 𝓕 → (Σ i, f i)
|
||||
/-- The complex coefficent of creation part of a field `i`. This is usually `0` or `1`. -/
|
||||
𝓧n : I → ℂ
|
||||
𝓧n : 𝓕 → ℂ
|
||||
/-- The complex coefficent of annhilation part of a field `i`. This is usually `0` or `1`. -/
|
||||
𝓧p : I → ℂ
|
||||
𝓧p : 𝓕 → ℂ
|
||||
h𝓑 : ∀ i, ofListLift f [i] 1 = ofList [𝓑n i] (𝓧n i) + ofList [𝓑p i] (𝓧p i)
|
||||
h𝓑n : ∀ i j, le1 (𝓑n i) j
|
||||
h𝓑p : ∀ i j, le1 j (𝓑p i)
|
||||
|
||||
/-- In the static wick's theorem, the term associated with a contraction `c` containing
|
||||
the contractions. -/
|
||||
def toCenterTerm {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
|
||||
(q : I → FieldStatistic)
|
||||
noncomputable def toCenterTerm (f : 𝓕 → Type) [∀ i, Fintype (f i)]
|
||||
(q : 𝓕 → FieldStatistic)
|
||||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ[ℂ] A) :
|
||||
{r : List I} → (c : Contractions r) → (S : Splitting f le1) → A
|
||||
{r : List 𝓕} → (c : Contractions r) → (S : Splitting f le1) → A
|
||||
| [], ⟨[], .nil⟩, _ => 1
|
||||
| _ :: _, ⟨_, .cons (aux := aux') none c⟩, S => toCenterTerm f q le1 F ⟨aux', c⟩ S
|
||||
| a :: _, ⟨_, .cons (aux := aux') (some n) c⟩, S => toCenterTerm f q le1 F ⟨aux', c⟩ S *
|
||||
superCommuteCoef q [aux'.get n] (List.take (↑n) aux') •
|
||||
F (((superCommute fun i => q i.fst) (ofList [S.𝓑p a] (S.𝓧p a))) (ofListLift f [aux'.get n] 1))
|
||||
|
||||
lemma toCenterTerm_none {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
|
||||
(q : I → FieldStatistic) {r : List I}
|
||||
lemma toCenterTerm_none (f : 𝓕 → Type) [∀ i, Fintype (f i)]
|
||||
(q : 𝓕 → FieldStatistic) {r : List 𝓕}
|
||||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A)
|
||||
(S : Splitting f le1) (a : I) (c : Contractions r) :
|
||||
(S : Splitting f le1) (a : 𝓕) (c : Contractions r) :
|
||||
toCenterTerm (r := a :: r) f q le1 F (Contractions.consEquiv.symm ⟨c, none⟩) S =
|
||||
toCenterTerm f q le1 F c S := by
|
||||
rw [consEquiv]
|
||||
|
@ -150,12 +150,12 @@ lemma toCenterTerm_none {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
|
|||
dsimp [toCenterTerm]
|
||||
rfl
|
||||
|
||||
lemma toCenterTerm_center {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
|
||||
(q : I → FieldStatistic)
|
||||
lemma toCenterTerm_center (f : 𝓕 → Type) [∀ i, Fintype (f i)]
|
||||
(q : 𝓕 → FieldStatistic)
|
||||
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
|
||||
{A : Type} [Semiring A] [Algebra ℂ A]
|
||||
(F : FreeAlgebra ℂ (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F] :
|
||||
{r : List I} → (c : Contractions r) → (S : Splitting f le1) →
|
||||
{r : List 𝓕} → (c : Contractions r) → (S : Splitting f le1) →
|
||||
(c.toCenterTerm f q le1 F S) ∈ Subalgebra.center ℂ A
|
||||
| [], ⟨[], .nil⟩, _ => by
|
||||
dsimp [toCenterTerm]
|
||||
|
@ -179,5 +179,4 @@ lemma toCenterTerm_center {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
|
|||
|
||||
end Contractions
|
||||
|
||||
end
|
||||
end Wick
|
|
@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Contraction
|
||||
import HepLean.PerturbationTheory.Wick.Contractions
|
||||
/-!
|
||||
|
||||
# Static Wick's theorem
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue