refactor: Update contractions

This commit is contained in:
jstoobysmith 2024-12-20 13:53:22 +00:00
parent e4dafbd291
commit b93ae33963
3 changed files with 29 additions and 30 deletions

View file

@ -12,35 +12,35 @@ import HepLean.PerturbationTheory.Wick.OperatorMap
namespace Wick
noncomputable section
open HepLean.List
open FieldStatistic
variable {𝓕 : Type}
/-- Given a list of fields `l`, the type of pairwise-contractions associated with `l`
which have the list `aux` uncontracted. -/
inductive ContractionsAux {I : Type} : (l : List I) → (aux : List I) → Type
inductive ContractionsAux : (l : List 𝓕) → (aux : List 𝓕) → Type
| nil : ContractionsAux [] []
| cons {l : List I} {aux : List I} {a : I} (i : Option (Fin aux.length)) :
| cons {l : List 𝓕} {aux : List 𝓕} {a : 𝓕} (i : Option (Fin aux.length)) :
ContractionsAux l aux → ContractionsAux (a :: l) (optionEraseZ aux a i)
/-- Given a list of fields `l`, the type of pairwise-contractions associated with `l`. -/
def Contractions {I : Type} (l : List I) : Type := Σ aux, ContractionsAux l aux
def Contractions (l : List 𝓕) : Type := Σ aux, ContractionsAux l aux
namespace Contractions
variable {I : Type} {l : List I} (c : Contractions l)
variable {l : List 𝓕} (c : Contractions l)
/-- The list of uncontracted fields. -/
def normalize : List I := c.1
def normalize : List 𝓕 := c.1
lemma contractions_nil (a : Contractions ([] : List I)) : a = ⟨[], ContractionsAux.nil⟩ := by
lemma contractions_nil (a : Contractions ([] : List 𝓕)) : a = ⟨[], ContractionsAux.nil⟩ := by
cases a
rename_i aux c
cases c
rfl
lemma contractions_single {i : I} (a : Contractions [i]) : a =
lemma contractions_single {i : 𝓕} (a : Contractions [i]) : a =
⟨[i], ContractionsAux.cons none ContractionsAux.nil⟩ := by
cases a
rename_i aux c
@ -53,7 +53,7 @@ lemma contractions_single {i : I} (a : Contractions [i]) : a =
exact Fin.elim0 x
/-- For the nil list of fields there is only one contraction. -/
def nilEquiv : Contractions ([] : List I) ≃ Unit where
def nilEquiv : Contractions ([] : List 𝓕) ≃ Unit where
toFun _ := ()
invFun _ := ⟨[], ContractionsAux.nil⟩
left_inv a := Eq.symm (contractions_nil a)
@ -62,7 +62,7 @@ def nilEquiv : Contractions ([] : List I) ≃ Unit where
/-- The equivalence between contractions of `a :: l` and contractions of
`Contractions l` paired with an optional element of `Fin (c.normalize).length` specifying
what `a` contracts with if any. -/
def consEquiv {a : I} {l : List I} :
def consEquiv {a : 𝓕} {l : List 𝓕} :
Contractions (a :: l) ≃ (c : Contractions l) × Option (Fin (c.normalize).length) where
toFun c :=
match c with
@ -79,7 +79,7 @@ def consEquiv {a : I} {l : List I} :
right_inv ci := by rfl
/-- The type of contractions is decidable. -/
instance decidable : (l : List I) → DecidableEq (Contractions l)
instance decidable : (l : List 𝓕) → DecidableEq (Contractions l)
| [] => fun a b =>
match a, b with
| ⟨_, a⟩, ⟨_, b⟩ =>
@ -92,7 +92,7 @@ instance decidable : (l : List I) → DecidableEq (Contractions l)
Equiv.decidableEq consEquiv
/-- The type of contractions is finite. -/
instance fintype : (l : List I) → Fintype (Contractions l)
instance fintype : (l : List 𝓕) → Fintype (Contractions l)
| [] => {
elems := {⟨[], ContractionsAux.nil⟩}
complete := by
@ -107,42 +107,42 @@ instance fintype : (l : List I) → Fintype (Contractions l)
/-- A structure specifying when a type `I` and a map `f :I → Type` corresponds to
the splitting of a fields `φ` into a creation `n` and annihlation part `p`. -/
structure Splitting {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
structure Splitting (f : 𝓕 → Type) [∀ i, Fintype (f i)]
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1] where
/-- The creation part of the fields. The label `n` corresponds to the fact that
in normal ordering these feilds get pushed to the negative (left) direction. -/
𝓑n : I → (Σ i, f i)
𝓑n : 𝓕 → (Σ i, f i)
/-- The annhilation part of the fields. The label `p` corresponds to the fact that
in normal ordering these feilds get pushed to the positive (right) direction. -/
𝓑p : I → (Σ i, f i)
𝓑p : 𝓕 → (Σ i, f i)
/-- The complex coefficent of creation part of a field `i`. This is usually `0` or `1`. -/
𝓧n : I
𝓧n : 𝓕
/-- The complex coefficent of annhilation part of a field `i`. This is usually `0` or `1`. -/
𝓧p : I
𝓧p : 𝓕
h𝓑 : ∀ i, ofListLift f [i] 1 = ofList [𝓑n i] (𝓧n i) + ofList [𝓑p i] (𝓧p i)
h𝓑n : ∀ i j, le1 (𝓑n i) j
h𝓑p : ∀ i j, le1 j (𝓑p i)
/-- In the static wick's theorem, the term associated with a contraction `c` containing
the contractions. -/
def toCenterTerm {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
(q : I → FieldStatistic)
noncomputable def toCenterTerm (f : 𝓕 → Type) [∀ i, Fintype (f i)]
(q : 𝓕 → FieldStatistic)
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra (Σ i, f i) →ₐ[] A) :
{r : List I} → (c : Contractions r) → (S : Splitting f le1) → A
{r : List 𝓕} → (c : Contractions r) → (S : Splitting f le1) → A
| [], ⟨[], .nil⟩, _ => 1
| _ :: _, ⟨_, .cons (aux := aux') none c⟩, S => toCenterTerm f q le1 F ⟨aux', c⟩ S
| a :: _, ⟨_, .cons (aux := aux') (some n) c⟩, S => toCenterTerm f q le1 F ⟨aux', c⟩ S *
superCommuteCoef q [aux'.get n] (List.take (↑n) aux') •
F (((superCommute fun i => q i.fst) (ofList [S.𝓑p a] (S.𝓧p a))) (ofListLift f [aux'.get n] 1))
lemma toCenterTerm_none {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
(q : I → FieldStatistic) {r : List I}
lemma toCenterTerm_none (f : 𝓕 → Type) [∀ i, Fintype (f i)]
(q : 𝓕 → FieldStatistic) {r : List 𝓕}
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra (Σ i, f i) →ₐ A)
(S : Splitting f le1) (a : I) (c : Contractions r) :
(S : Splitting f le1) (a : 𝓕) (c : Contractions r) :
toCenterTerm (r := a :: r) f q le1 F (Contractions.consEquiv.symm ⟨c, none⟩) S =
toCenterTerm f q le1 F c S := by
rw [consEquiv]
@ -150,12 +150,12 @@ lemma toCenterTerm_none {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
dsimp [toCenterTerm]
rfl
lemma toCenterTerm_center {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
(q : I → FieldStatistic)
lemma toCenterTerm_center (f : 𝓕 → Type) [∀ i, Fintype (f i)]
(q : 𝓕 → FieldStatistic)
(le1 : (Σ i, f i) → (Σ i, f i) → Prop) [DecidableRel le1]
{A : Type} [Semiring A] [Algebra A]
(F : FreeAlgebra (Σ i, f i) →ₐ A) [OperatorMap (fun i => q i.1) le1 F] :
{r : List I} → (c : Contractions r) → (S : Splitting f le1) →
{r : List 𝓕} → (c : Contractions r) → (S : Splitting f le1) →
(c.toCenterTerm f q le1 F S) ∈ Subalgebra.center A
| [], ⟨[], .nil⟩, _ => by
dsimp [toCenterTerm]
@ -179,5 +179,4 @@ lemma toCenterTerm_center {I : Type} (f : I → Type) [∀ i, Fintype (f i)]
end Contractions
end
end Wick

View file

@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Wick.Contraction
import HepLean.PerturbationTheory.Wick.Contractions
/-!
# Static Wick's theorem