feat: Going to const-dest fields commute timeorder

This commit is contained in:
jstoobysmith 2024-12-10 10:03:51 +00:00
parent 7ee877af55
commit b98d89fb0d
4 changed files with 288 additions and 234 deletions

View file

@ -6,65 +6,20 @@ Authors: Joseph Tooby-Smith
import Mathlib.LinearAlgebra.PiTensorProduct
import Mathlib.Tactic.Polyrith
import Mathlib.Tactic.Linarith
import HepLean.Mathematics.Fin
/-!
# List lemmas
-/
namespace HepLean.List
open Fin
open HepLean
variable {n : Nat}
def Fin.equivCons {n m : } (e : Fin n ≃ Fin m) : Fin n.succ ≃ Fin m.succ where
toFun := Fin.cons 0 (Fin.succ ∘ e.toFun)
invFun := Fin.cons 0 (Fin.succ ∘ e.invFun)
left_inv i := by
rcases Fin.eq_zero_or_eq_succ i with hi | hi
· subst hi
simp
· obtain ⟨j, hj⟩ := hi
subst hj
simp
right_inv i := by
rcases Fin.eq_zero_or_eq_succ i with hi | hi
· subst hi
simp
· obtain ⟨j, hj⟩ := hi
subst hj
simp
@[simp]
lemma Fin.equivCons_trans {n m k : } (e : Fin n ≃ Fin m) (f : Fin m ≃ Fin k) :
Fin.equivCons (e.trans f) = (Fin.equivCons e).trans (Fin.equivCons f) := by
refine Equiv.ext_iff.mpr ?_
intro x
simp [Fin.equivCons]
match x with
| ⟨0, h⟩ => rfl
| ⟨i + 1, h⟩ => rfl
@[simp]
lemma Fin.equivCons_castOrderIso {n m : } (h : n = m) :
(Fin.equivCons (Fin.castOrderIso h).toEquiv) = (Fin.castOrderIso (by simp [h])).toEquiv := by
refine Equiv.ext_iff.mpr ?_
intro x
simp [Fin.equivCons]
match x with
| ⟨0, h⟩ => rfl
| ⟨i + 1, h⟩ => rfl
@[simp]
lemma Fin.equivCons_symm_succ {n m : } (e : Fin n ≃ Fin m) (i : ) (hi : i + 1 < m.succ) :
(Fin.equivCons e).symm ⟨i + 1, hi⟩ = (e.symm ⟨i , Nat.succ_lt_succ_iff.mp hi⟩).succ := by
simp [Fin.equivCons]
have hi : ⟨i + 1, hi⟩ = Fin.succ ⟨i, Nat.succ_lt_succ_iff.mp hi⟩ := by rfl
rw [hi]
rw [Fin.cons_succ]
simp
def insertEquiv {α : Type} (r : αα → Prop) [DecidableRel r] (a : α) : (l : List α) →
/-- The equivalence between `Fin (a :: l).length` and `Fin (List.orderedInsert r a l).length`
mapping `0` in the former to the location of `a` in the latter. -/
def insertEquiv {α : Type} (r : αα → Prop) [DecidableRel r] (a : α) : (l : List α) →
Fin (a :: l).length ≃ Fin (List.orderedInsert r a l).length
| [] => Equiv.refl _
| b :: l => by
@ -74,13 +29,13 @@ def insertEquiv {α : Type} (r : αα → Prop) [DecidableRel r] (a : α) :
let e := insertEquiv (r := r) a l
let e2 : Fin (a :: b :: l).length ≃ Fin (b :: a :: l).length :=
Equiv.swap ⟨0, Nat.zero_lt_succ (b :: l).length⟩ ⟨1, Nat.one_lt_succ_succ l.length⟩
let e3 : Fin (b :: a :: l).length ≃ Fin (b :: List.orderedInsert r a l).length :=
let e3 : Fin (b :: a :: l).length ≃ Fin (b :: List.orderedInsert r a l).length :=
Fin.equivCons e
let e4 : Fin (b :: List.orderedInsert r a l).length ≃ Fin (List.orderedInsert r a (b :: l)).length :=
let e4 : Fin (b :: List.orderedInsert r a l).length ≃
Fin (List.orderedInsert r a (b :: l)).length :=
(Fin.castOrderIso (by
rw [List.orderedInsert_length]
simpa using List.orderedInsert_length r l a
)).toEquiv
simpa using List.orderedInsert_length r l a)).toEquiv
exact e2.trans (e3.trans e4)
lemma insertEquiv_congr {α : Type} {r : αα → Prop} [DecidableRel r] (a : α) (l l' : List α)
@ -99,30 +54,30 @@ lemma insertEquiv_cons_neg {α : Type} {r : αα → Prop} [DecidableRel r]
let e := insertEquiv r a l
let e2 : Fin (a :: b :: l).length ≃ Fin (b :: a :: l).length :=
Equiv.swap ⟨0, Nat.zero_lt_succ (b :: l).length⟩ ⟨1, Nat.one_lt_succ_succ l.length⟩
let e3 : Fin (b :: a :: l).length ≃ Fin (b :: List.orderedInsert r a l).length :=
let e3 : Fin (b :: a :: l).length ≃ Fin (b :: List.orderedInsert r a l).length :=
Fin.equivCons e
let e4 : Fin (b :: List.orderedInsert r a l).length ≃ Fin (List.orderedInsert r a (b :: l)).length :=
let e4 : Fin (b :: List.orderedInsert r a l).length ≃
Fin (List.orderedInsert r a (b :: l)).length :=
(Fin.castOrderIso (by
rw [List.orderedInsert_length]
simpa using List.orderedInsert_length r l a
)).toEquiv
simpa using List.orderedInsert_length r l a)).toEquiv
e2.trans (e3.trans e4) := by
simp [insertEquiv, hab]
lemma insertEquiv_get {α : Type} {r : αα → Prop} [DecidableRel r] (a : α) : (l : List α) →
lemma insertEquiv_get {α : Type} {r : αα → Prop} [DecidableRel r] (a : α) : (l : List α) →
(a :: l).get ∘ (insertEquiv r a l).symm = (List.orderedInsert r a l).get
| [] => by
simp [insertEquiv]
| b :: l => by
by_cases hr : r a b
· rw [insertEquiv_cons_pos a b hr l]
simp_all only [List.orderedInsert.eq_2, List.length_cons, OrderIso.toEquiv_symm, symm_castOrderIso,
RelIso.coe_fn_toEquiv]
simp_all only [List.orderedInsert.eq_2, List.length_cons, OrderIso.toEquiv_symm,
Fin.symm_castOrderIso, RelIso.coe_fn_toEquiv]
ext x : 1
simp_all only [Function.comp_apply, castOrderIso_apply, List.get_eq_getElem, List.length_cons, coe_cast,
↓reduceIte]
simp_all only [Function.comp_apply, Fin.castOrderIso_apply, List.get_eq_getElem,
List.length_cons, Fin.coe_cast, ↓reduceIte]
· rw [insertEquiv_cons_neg a b hr l]
trans (b :: List.orderedInsert r a l).get ∘ Fin.cast (by
trans (b :: List.orderedInsert r a l).get ∘ Fin.cast (by
rw [List.orderedInsert_length]
simp [List.orderedInsert_length])
· simp
@ -137,32 +92,37 @@ lemma insertEquiv_get {α : Type} {r : αα → Prop} [DecidableRel r] (a :
| ⟨0, h⟩ => rfl
| ⟨1, h⟩ => rfl
| ⟨Nat.succ (Nat.succ x), h⟩ => rfl
trans (a :: b :: l).get (Equiv.swap ⟨0, by simp⟩ ⟨1, by simp⟩ ((insertEquiv r a l).symm ⟨x, by simpa [List.orderedInsert_length, hr] using h⟩).succ)
trans (a :: b :: l).get (Equiv.swap ⟨0, by simp⟩ ⟨1, by simp⟩
((insertEquiv r a l).symm ⟨x, by simpa [List.orderedInsert_length, hr] using h⟩).succ)
· simp
· rw [hswap]
simp
simp only [List.length_cons, List.get_eq_getElem, Fin.val_succ, List.getElem_cons_succ]
change _ = (List.orderedInsert r a l).get _
rw [← insertEquiv_get (r := r) a l]
simp
· simp_all only [List.orderedInsert.eq_2, List.length_cons]
ext x : 1
simp_all only [Function.comp_apply, List.get_eq_getElem, List.length_cons, coe_cast, ↓reduceIte]
simp_all only [Function.comp_apply, List.get_eq_getElem, List.length_cons, Fin.coe_cast,
↓reduceIte]
def insertionSortEquiv {α : Type} (r : αα → Prop) [DecidableRel r] : (l : List α) →
/-- The equivalence between `Fin l.length ≃ Fin (List.insertionSort r l).length` induced by the
sorting algorithm. -/
def insertionSortEquiv {α : Type} (r : αα → Prop) [DecidableRel r] : (l : List α) →
Fin l.length ≃ Fin (List.insertionSort r l).length
| [] => Equiv.refl _
| a :: l =>
(Fin.equivCons (insertionSortEquiv r l)).trans (insertEquiv r a (List.insertionSort r l))
lemma insertionSortEquiv_get {α : Type} {r : αα → Prop} [DecidableRel r] : (l : List α) →
lemma insertionSortEquiv_get {α : Type} {r : αα → Prop} [DecidableRel r] : (l : List α) →
l.get ∘ (insertionSortEquiv r l).symm = (List.insertionSort r l).get
| [] => by
simp [insertionSortEquiv]
| a :: l => by
rw [insertionSortEquiv]
change ((a :: l).get ∘ ((Fin.equivCons (insertionSortEquiv r l))).symm) ∘ (insertEquiv r a (List.insertionSort r l)).symm = _
have hl : (a :: l).get ∘ ((Fin.equivCons (insertionSortEquiv r l))).symm = (a :: List.insertionSort r l).get := by
change ((a :: l).get ∘ ((Fin.equivCons (insertionSortEquiv r l))).symm) ∘
(insertEquiv r a (List.insertionSort r l)).symm = _
have hl : (a :: l).get ∘ ((Fin.equivCons (insertionSortEquiv r l))).symm =
(a :: List.insertionSort r l).get := by
ext x
match x with
| ⟨0, h⟩ => rfl
@ -179,5 +139,4 @@ lemma insertionSort_eq_ofFn {α : Type} {r : αα → Prop} [DecidableRel r
rw [insertionSortEquiv_get (r := r)]
exact Eq.symm (List.ofFn_get (List.insertionSort r l))
end HepLean.List