feat: Going to const-dest fields commute timeorder
This commit is contained in:
parent
7ee877af55
commit
b98d89fb0d
4 changed files with 288 additions and 234 deletions
|
@ -101,6 +101,7 @@ import HepLean.Lorentz.Weyl.Two
|
|||
import HepLean.Lorentz.Weyl.Unit
|
||||
import HepLean.Mathematics.Fin
|
||||
import HepLean.Mathematics.LinearMaps
|
||||
import HepLean.Mathematics.List
|
||||
import HepLean.Mathematics.PiTensorProduct
|
||||
import HepLean.Mathematics.SO3.Basic
|
||||
import HepLean.Mathematics.SuperAlgebra.Basic
|
||||
|
|
|
@ -356,4 +356,53 @@ lemma finMapToEquiv_symm_eq {f1 : Fin n → Fin m} {f2 : Fin m → Fin n}
|
|||
(finMapToEquiv f1 f2 h h').symm = finMapToEquiv f2 f1 h' h := by
|
||||
rfl
|
||||
|
||||
/-- Given an equivalence between `Fin n` and `Fin m`, the induced equivalence between
|
||||
`Fin n.succ` and `Fin m.succ` derived by `Fin.cons`. -/
|
||||
def equivCons {n m : ℕ} (e : Fin n ≃ Fin m) : Fin n.succ ≃ Fin m.succ where
|
||||
toFun := Fin.cons 0 (Fin.succ ∘ e.toFun)
|
||||
invFun := Fin.cons 0 (Fin.succ ∘ e.invFun)
|
||||
left_inv i := by
|
||||
rcases Fin.eq_zero_or_eq_succ i with hi | hi
|
||||
· subst hi
|
||||
simp
|
||||
· obtain ⟨j, hj⟩ := hi
|
||||
subst hj
|
||||
simp
|
||||
right_inv i := by
|
||||
rcases Fin.eq_zero_or_eq_succ i with hi | hi
|
||||
· subst hi
|
||||
simp
|
||||
· obtain ⟨j, hj⟩ := hi
|
||||
subst hj
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma equivCons_trans {n m k : ℕ} (e : Fin n ≃ Fin m) (f : Fin m ≃ Fin k) :
|
||||
Fin.equivCons (e.trans f) = (Fin.equivCons e).trans (Fin.equivCons f) := by
|
||||
refine Equiv.ext_iff.mpr ?_
|
||||
intro x
|
||||
simp [Fin.equivCons]
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨i + 1, h⟩ => rfl
|
||||
|
||||
@[simp]
|
||||
lemma equivCons_castOrderIso {n m : ℕ} (h : n = m) :
|
||||
(Fin.equivCons (Fin.castOrderIso h).toEquiv) = (Fin.castOrderIso (by simp [h])).toEquiv := by
|
||||
refine Equiv.ext_iff.mpr ?_
|
||||
intro x
|
||||
simp [Fin.equivCons]
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨i + 1, h⟩ => rfl
|
||||
|
||||
@[simp]
|
||||
lemma equivCons_symm_succ {n m : ℕ} (e : Fin n ≃ Fin m) (i : ℕ) (hi : i + 1 < m.succ) :
|
||||
(Fin.equivCons e).symm ⟨i + 1, hi⟩ = (e.symm ⟨i, Nat.succ_lt_succ_iff.mp hi⟩).succ := by
|
||||
simp [Fin.equivCons]
|
||||
have hi : ⟨i + 1, hi⟩ = Fin.succ ⟨i, Nat.succ_lt_succ_iff.mp hi⟩ := by rfl
|
||||
rw [hi]
|
||||
rw [Fin.cons_succ]
|
||||
simp
|
||||
|
||||
end HepLean.Fin
|
||||
|
|
|
@ -6,65 +6,20 @@ Authors: Joseph Tooby-Smith
|
|||
import Mathlib.LinearAlgebra.PiTensorProduct
|
||||
import Mathlib.Tactic.Polyrith
|
||||
import Mathlib.Tactic.Linarith
|
||||
import HepLean.Mathematics.Fin
|
||||
/-!
|
||||
# List lemmas
|
||||
|
||||
|
||||
|
||||
-/
|
||||
namespace HepLean.List
|
||||
|
||||
open Fin
|
||||
open HepLean
|
||||
variable {n : Nat}
|
||||
|
||||
def Fin.equivCons {n m : ℕ} (e : Fin n ≃ Fin m) : Fin n.succ ≃ Fin m.succ where
|
||||
toFun := Fin.cons 0 (Fin.succ ∘ e.toFun)
|
||||
invFun := Fin.cons 0 (Fin.succ ∘ e.invFun)
|
||||
left_inv i := by
|
||||
rcases Fin.eq_zero_or_eq_succ i with hi | hi
|
||||
· subst hi
|
||||
simp
|
||||
· obtain ⟨j, hj⟩ := hi
|
||||
subst hj
|
||||
simp
|
||||
right_inv i := by
|
||||
rcases Fin.eq_zero_or_eq_succ i with hi | hi
|
||||
· subst hi
|
||||
simp
|
||||
· obtain ⟨j, hj⟩ := hi
|
||||
subst hj
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma Fin.equivCons_trans {n m k : ℕ} (e : Fin n ≃ Fin m) (f : Fin m ≃ Fin k) :
|
||||
Fin.equivCons (e.trans f) = (Fin.equivCons e).trans (Fin.equivCons f) := by
|
||||
refine Equiv.ext_iff.mpr ?_
|
||||
intro x
|
||||
simp [Fin.equivCons]
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨i + 1, h⟩ => rfl
|
||||
|
||||
@[simp]
|
||||
lemma Fin.equivCons_castOrderIso {n m : ℕ} (h : n = m) :
|
||||
(Fin.equivCons (Fin.castOrderIso h).toEquiv) = (Fin.castOrderIso (by simp [h])).toEquiv := by
|
||||
refine Equiv.ext_iff.mpr ?_
|
||||
intro x
|
||||
simp [Fin.equivCons]
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨i + 1, h⟩ => rfl
|
||||
|
||||
@[simp]
|
||||
lemma Fin.equivCons_symm_succ {n m : ℕ} (e : Fin n ≃ Fin m) (i : ℕ) (hi : i + 1 < m.succ) :
|
||||
(Fin.equivCons e).symm ⟨i + 1, hi⟩ = (e.symm ⟨i , Nat.succ_lt_succ_iff.mp hi⟩).succ := by
|
||||
simp [Fin.equivCons]
|
||||
have hi : ⟨i + 1, hi⟩ = Fin.succ ⟨i, Nat.succ_lt_succ_iff.mp hi⟩ := by rfl
|
||||
rw [hi]
|
||||
rw [Fin.cons_succ]
|
||||
simp
|
||||
|
||||
def insertEquiv {α : Type} (r : α → α → Prop) [DecidableRel r] (a : α) : (l : List α) →
|
||||
/-- The equivalence between `Fin (a :: l).length` and `Fin (List.orderedInsert r a l).length`
|
||||
mapping `0` in the former to the location of `a` in the latter. -/
|
||||
def insertEquiv {α : Type} (r : α → α → Prop) [DecidableRel r] (a : α) : (l : List α) →
|
||||
Fin (a :: l).length ≃ Fin (List.orderedInsert r a l).length
|
||||
| [] => Equiv.refl _
|
||||
| b :: l => by
|
||||
|
@ -74,13 +29,13 @@ def insertEquiv {α : Type} (r : α → α → Prop) [DecidableRel r] (a : α) :
|
|||
let e := insertEquiv (r := r) a l
|
||||
let e2 : Fin (a :: b :: l).length ≃ Fin (b :: a :: l).length :=
|
||||
Equiv.swap ⟨0, Nat.zero_lt_succ (b :: l).length⟩ ⟨1, Nat.one_lt_succ_succ l.length⟩
|
||||
let e3 : Fin (b :: a :: l).length ≃ Fin (b :: List.orderedInsert r a l).length :=
|
||||
let e3 : Fin (b :: a :: l).length ≃ Fin (b :: List.orderedInsert r a l).length :=
|
||||
Fin.equivCons e
|
||||
let e4 : Fin (b :: List.orderedInsert r a l).length ≃ Fin (List.orderedInsert r a (b :: l)).length :=
|
||||
let e4 : Fin (b :: List.orderedInsert r a l).length ≃
|
||||
Fin (List.orderedInsert r a (b :: l)).length :=
|
||||
(Fin.castOrderIso (by
|
||||
rw [List.orderedInsert_length]
|
||||
simpa using List.orderedInsert_length r l a
|
||||
)).toEquiv
|
||||
simpa using List.orderedInsert_length r l a)).toEquiv
|
||||
exact e2.trans (e3.trans e4)
|
||||
|
||||
lemma insertEquiv_congr {α : Type} {r : α → α → Prop} [DecidableRel r] (a : α) (l l' : List α)
|
||||
|
@ -99,30 +54,30 @@ lemma insertEquiv_cons_neg {α : Type} {r : α → α → Prop} [DecidableRel r]
|
|||
let e := insertEquiv r a l
|
||||
let e2 : Fin (a :: b :: l).length ≃ Fin (b :: a :: l).length :=
|
||||
Equiv.swap ⟨0, Nat.zero_lt_succ (b :: l).length⟩ ⟨1, Nat.one_lt_succ_succ l.length⟩
|
||||
let e3 : Fin (b :: a :: l).length ≃ Fin (b :: List.orderedInsert r a l).length :=
|
||||
let e3 : Fin (b :: a :: l).length ≃ Fin (b :: List.orderedInsert r a l).length :=
|
||||
Fin.equivCons e
|
||||
let e4 : Fin (b :: List.orderedInsert r a l).length ≃ Fin (List.orderedInsert r a (b :: l)).length :=
|
||||
let e4 : Fin (b :: List.orderedInsert r a l).length ≃
|
||||
Fin (List.orderedInsert r a (b :: l)).length :=
|
||||
(Fin.castOrderIso (by
|
||||
rw [List.orderedInsert_length]
|
||||
simpa using List.orderedInsert_length r l a
|
||||
)).toEquiv
|
||||
simpa using List.orderedInsert_length r l a)).toEquiv
|
||||
e2.trans (e3.trans e4) := by
|
||||
simp [insertEquiv, hab]
|
||||
|
||||
lemma insertEquiv_get {α : Type} {r : α → α → Prop} [DecidableRel r] (a : α) : (l : List α) →
|
||||
lemma insertEquiv_get {α : Type} {r : α → α → Prop} [DecidableRel r] (a : α) : (l : List α) →
|
||||
(a :: l).get ∘ (insertEquiv r a l).symm = (List.orderedInsert r a l).get
|
||||
| [] => by
|
||||
simp [insertEquiv]
|
||||
| b :: l => by
|
||||
by_cases hr : r a b
|
||||
· rw [insertEquiv_cons_pos a b hr l]
|
||||
simp_all only [List.orderedInsert.eq_2, List.length_cons, OrderIso.toEquiv_symm, symm_castOrderIso,
|
||||
RelIso.coe_fn_toEquiv]
|
||||
simp_all only [List.orderedInsert.eq_2, List.length_cons, OrderIso.toEquiv_symm,
|
||||
Fin.symm_castOrderIso, RelIso.coe_fn_toEquiv]
|
||||
ext x : 1
|
||||
simp_all only [Function.comp_apply, castOrderIso_apply, List.get_eq_getElem, List.length_cons, coe_cast,
|
||||
↓reduceIte]
|
||||
simp_all only [Function.comp_apply, Fin.castOrderIso_apply, List.get_eq_getElem,
|
||||
List.length_cons, Fin.coe_cast, ↓reduceIte]
|
||||
· rw [insertEquiv_cons_neg a b hr l]
|
||||
trans (b :: List.orderedInsert r a l).get ∘ Fin.cast (by
|
||||
trans (b :: List.orderedInsert r a l).get ∘ Fin.cast (by
|
||||
rw [List.orderedInsert_length]
|
||||
simp [List.orderedInsert_length])
|
||||
· simp
|
||||
|
@ -137,32 +92,37 @@ lemma insertEquiv_get {α : Type} {r : α → α → Prop} [DecidableRel r] (a :
|
|||
| ⟨0, h⟩ => rfl
|
||||
| ⟨1, h⟩ => rfl
|
||||
| ⟨Nat.succ (Nat.succ x), h⟩ => rfl
|
||||
trans (a :: b :: l).get (Equiv.swap ⟨0, by simp⟩ ⟨1, by simp⟩ ((insertEquiv r a l).symm ⟨x, by simpa [List.orderedInsert_length, hr] using h⟩).succ)
|
||||
trans (a :: b :: l).get (Equiv.swap ⟨0, by simp⟩ ⟨1, by simp⟩
|
||||
((insertEquiv r a l).symm ⟨x, by simpa [List.orderedInsert_length, hr] using h⟩).succ)
|
||||
· simp
|
||||
· rw [hswap]
|
||||
simp
|
||||
simp only [List.length_cons, List.get_eq_getElem, Fin.val_succ, List.getElem_cons_succ]
|
||||
change _ = (List.orderedInsert r a l).get _
|
||||
rw [← insertEquiv_get (r := r) a l]
|
||||
simp
|
||||
· simp_all only [List.orderedInsert.eq_2, List.length_cons]
|
||||
ext x : 1
|
||||
simp_all only [Function.comp_apply, List.get_eq_getElem, List.length_cons, coe_cast, ↓reduceIte]
|
||||
simp_all only [Function.comp_apply, List.get_eq_getElem, List.length_cons, Fin.coe_cast,
|
||||
↓reduceIte]
|
||||
|
||||
def insertionSortEquiv {α : Type} (r : α → α → Prop) [DecidableRel r] : (l : List α) →
|
||||
/-- The equivalence between `Fin l.length ≃ Fin (List.insertionSort r l).length` induced by the
|
||||
sorting algorithm. -/
|
||||
def insertionSortEquiv {α : Type} (r : α → α → Prop) [DecidableRel r] : (l : List α) →
|
||||
Fin l.length ≃ Fin (List.insertionSort r l).length
|
||||
| [] => Equiv.refl _
|
||||
| a :: l =>
|
||||
(Fin.equivCons (insertionSortEquiv r l)).trans (insertEquiv r a (List.insertionSort r l))
|
||||
|
||||
|
||||
lemma insertionSortEquiv_get {α : Type} {r : α → α → Prop} [DecidableRel r] : (l : List α) →
|
||||
lemma insertionSortEquiv_get {α : Type} {r : α → α → Prop} [DecidableRel r] : (l : List α) →
|
||||
l.get ∘ (insertionSortEquiv r l).symm = (List.insertionSort r l).get
|
||||
| [] => by
|
||||
simp [insertionSortEquiv]
|
||||
| a :: l => by
|
||||
rw [insertionSortEquiv]
|
||||
change ((a :: l).get ∘ ((Fin.equivCons (insertionSortEquiv r l))).symm) ∘ (insertEquiv r a (List.insertionSort r l)).symm = _
|
||||
have hl : (a :: l).get ∘ ((Fin.equivCons (insertionSortEquiv r l))).symm = (a :: List.insertionSort r l).get := by
|
||||
change ((a :: l).get ∘ ((Fin.equivCons (insertionSortEquiv r l))).symm) ∘
|
||||
(insertEquiv r a (List.insertionSort r l)).symm = _
|
||||
have hl : (a :: l).get ∘ ((Fin.equivCons (insertionSortEquiv r l))).symm =
|
||||
(a :: List.insertionSort r l).get := by
|
||||
ext x
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
|
@ -179,5 +139,4 @@ lemma insertionSort_eq_ofFn {α : Type} {r : α → α → Prop} [DecidableRel r
|
|||
rw [insertionSortEquiv_get (r := r)]
|
||||
exact Eq.symm (List.ofFn_get (List.insertionSort r l))
|
||||
|
||||
|
||||
end HepLean.List
|
||||
|
|
|
@ -287,6 +287,10 @@ def normalOrder (q : index S → Fin 2) : S.ConstDestAlgebra →ₗ[ℂ] S.Const
|
|||
def contract (q : index S → Fin 2) : S.ConstDestAlgebra →ₗ[ℂ] S.ConstDestAlgebra :=
|
||||
timeOrder q - normalOrder q
|
||||
|
||||
informal_lemma timeOrder_comm_normalOrder where
|
||||
math :≈ "time ordering and normal ordering commute."
|
||||
deps :≈ [``timeOrder, ``normalOrder]
|
||||
|
||||
end
|
||||
|
||||
end ConstDestAlgebra
|
||||
|
@ -303,14 +307,16 @@ def toWickAlgebra : FieldAlgebra S →ₐ[ℂ] 𝓞.A :=
|
|||
lemma toWickAlgebra_ι (i : index S) : toWickAlgebra 𝓞 (FreeAlgebra.ι ℂ i) = 𝓞.ψ i.1 i.2 := by
|
||||
simp [toWickAlgebra]
|
||||
|
||||
/-- The map from the field algebra to the algebra of constructive and destructive fields. -/
|
||||
def toConstDestAlgebra : FieldAlgebra S →ₐ[ℂ] ConstDestAlgebra S :=
|
||||
FreeAlgebra.lift ℂ (fun i => FreeAlgebra.ι ℂ (0, i) + FreeAlgebra.ι ℂ (1, i))
|
||||
/-- The time ordering relation in the field algebra. -/
|
||||
def timeOrderRel : index S → index S → Prop := fun x y => x.2 0 ≤ y.2 0
|
||||
|
||||
@[simp]
|
||||
lemma toConstDestAlgebra_ι (i : index S) : toConstDestAlgebra (FreeAlgebra.ι ℂ i) =
|
||||
FreeAlgebra.ι ℂ (0, i) + FreeAlgebra.ι ℂ (1, i) := by
|
||||
simp [toConstDestAlgebra]
|
||||
/-- The time ordering relation in the field algebra is decidable. -/
|
||||
noncomputable instance : DecidableRel (@timeOrderRel S) :=
|
||||
fun a b => Real.decidableLE (a.2 0) (b.2 0)
|
||||
|
||||
/-- The time ordering in the field algebra. -/
|
||||
noncomputable def timeOrder (q : index S → Fin 2) : S.FieldAlgebra →ₗ[ℂ] S.FieldAlgebra :=
|
||||
koszulOrder timeOrderRel q
|
||||
|
||||
/-- Given a list of fields and a map `f` tell us which field is constructive and
|
||||
which is destructive, a list of constructive and destructive fields. -/
|
||||
|
@ -329,6 +335,111 @@ lemma listToConstDestList_length (l : List (index S)) (f : Fin l.length → Fin
|
|||
simp only [listToConstDestList, List.length_cons, Fin.zero_eta, Prod.mk.eta, add_left_inj]
|
||||
rw [ih]
|
||||
|
||||
lemma listToConstDestList_insertionSortEquiv (l : List (index S))
|
||||
(f : Fin l.length → Fin 2) :
|
||||
(HepLean.List.insertionSortEquiv ConstDestAlgebra.timeOrderRel (listToConstDestList l f))
|
||||
= (Fin.castOrderIso (by simp)).toEquiv.trans
|
||||
((HepLean.List.insertionSortEquiv timeOrderRel l).trans
|
||||
(Fin.castOrderIso (by simp)).toEquiv) := by
|
||||
induction l with
|
||||
| nil =>
|
||||
simp [listToConstDestList, HepLean.List.insertionSortEquiv]
|
||||
| cons i l ih =>
|
||||
simp only [listToConstDestList, List.length_cons, Fin.zero_eta, List.insertionSort]
|
||||
conv_lhs => simp [HepLean.List.insertionSortEquiv]
|
||||
have h1 (l' : List (ConstDestAlgebra.index S)) :
|
||||
(HepLean.List.insertEquiv ConstDestAlgebra.timeOrderRel (f ⟨0, by simp⟩, i.1, i.2) l') =
|
||||
(Fin.castOrderIso (by simp)).toEquiv.trans
|
||||
((HepLean.List.insertEquiv timeOrderRel (i.1, i.2) (l'.unzip).2).trans
|
||||
(Fin.castOrderIso (by simp [List.orderedInsert_length])).toEquiv) := by
|
||||
induction l' with
|
||||
| nil =>
|
||||
simp only [List.length_cons, Nat.add_zero, Nat.zero_eq, Fin.zero_eta, List.length_singleton,
|
||||
List.orderedInsert, HepLean.List.insertEquiv, Fin.castOrderIso_refl,
|
||||
OrderIso.refl_toEquiv, Equiv.trans_refl]
|
||||
rfl
|
||||
| cons j l' ih' =>
|
||||
by_cases hr : ConstDestAlgebra.timeOrderRel (f ⟨0, by simp⟩, i) j
|
||||
· rw [HepLean.List.insertEquiv_cons_pos]
|
||||
· erw [HepLean.List.insertEquiv_cons_pos]
|
||||
· rfl
|
||||
· exact hr
|
||||
· exact hr
|
||||
· rw [HepLean.List.insertEquiv_cons_neg]
|
||||
· erw [HepLean.List.insertEquiv_cons_neg]
|
||||
· simp only [List.length_cons, Nat.add_zero, Nat.zero_eq, Fin.zero_eta,
|
||||
List.orderedInsert, Prod.mk.eta, Fin.mk_one]
|
||||
erw [ih']
|
||||
ext x
|
||||
simp only [Prod.mk.eta, List.length_cons, Nat.add_zero, Nat.zero_eq, Fin.zero_eta,
|
||||
HepLean.Fin.equivCons_trans, Nat.succ_eq_add_one,
|
||||
HepLean.Fin.equivCons_castOrderIso, Equiv.trans_apply, RelIso.coe_fn_toEquiv,
|
||||
Fin.castOrderIso_apply, Fin.cast_trans, Fin.coe_cast]
|
||||
congr 2
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨1, h⟩ => rfl
|
||||
| ⟨Nat.succ (Nat.succ x), h⟩ => rfl
|
||||
· exact hr
|
||||
· exact hr
|
||||
erw [h1]
|
||||
rw [ih]
|
||||
simp only [HepLean.Fin.equivCons_trans, Nat.succ_eq_add_one,
|
||||
HepLean.Fin.equivCons_castOrderIso, List.length_cons, Nat.add_zero, Nat.zero_eq,
|
||||
Fin.zero_eta]
|
||||
ext x
|
||||
conv_rhs => simp [HepLean.List.insertionSortEquiv]
|
||||
simp only [Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.cast_trans,
|
||||
Fin.coe_cast]
|
||||
have h2' (i : ConstDestAlgebra.index S) (l' : List (ConstDestAlgebra.index S)) :
|
||||
(List.orderedInsert ConstDestAlgebra.timeOrderRel i l').unzip.2 =
|
||||
List.orderedInsert timeOrderRel i.2 l'.unzip.2 := by
|
||||
induction l' with
|
||||
| nil =>
|
||||
simp [HepLean.List.insertEquiv]
|
||||
| cons j l' ih' =>
|
||||
by_cases hij : ConstDestAlgebra.timeOrderRel i j
|
||||
· rw [List.orderedInsert_of_le]
|
||||
· erw [List.orderedInsert_of_le]
|
||||
· simp
|
||||
· exact hij
|
||||
· exact hij
|
||||
· simp only [List.orderedInsert, hij, ↓reduceIte, List.unzip_snd, List.map_cons]
|
||||
have hn : ¬ timeOrderRel i.2 j.2 := hij
|
||||
simp only [hn, ↓reduceIte, List.cons.injEq, true_and]
|
||||
simpa using ih'
|
||||
have h2 (l' : List (ConstDestAlgebra.index S)) :
|
||||
(List.insertionSort ConstDestAlgebra.timeOrderRel l').unzip.2 =
|
||||
List.insertionSort timeOrderRel l'.unzip.2 := by
|
||||
induction l' with
|
||||
| nil =>
|
||||
simp [HepLean.List.insertEquiv]
|
||||
| cons i l' ih' =>
|
||||
simp only [List.insertionSort, List.unzip_snd]
|
||||
simp only [List.unzip_snd] at h2'
|
||||
rw [h2']
|
||||
congr
|
||||
simpa using ih'
|
||||
rw [HepLean.List.insertEquiv_congr _ _ _ (h2 _)]
|
||||
simp only [List.length_cons, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
|
||||
Fin.cast_trans, Fin.coe_cast]
|
||||
have h3 : (List.insertionSort timeOrderRel (listToConstDestList l (f ∘ Fin.succ)).unzip.2) =
|
||||
List.insertionSort timeOrderRel l := by
|
||||
congr
|
||||
have h3' (l : List (index S)) (f : Fin l.length → Fin 2) :
|
||||
(listToConstDestList l (f)).unzip.2 = l := by
|
||||
induction l with
|
||||
| nil => rfl
|
||||
| cons i l ih' =>
|
||||
simp only [listToConstDestList, List.length_cons, Fin.zero_eta, Prod.mk.eta,
|
||||
List.unzip_snd, List.map_cons, List.cons.injEq, true_and]
|
||||
simpa using ih' (f ∘ Fin.succ)
|
||||
rw [h3']
|
||||
rw [HepLean.List.insertEquiv_congr _ _ _ h3]
|
||||
simp only [List.length_cons, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply,
|
||||
Fin.cast_trans, Fin.cast_eq_self, Fin.coe_cast]
|
||||
rfl
|
||||
|
||||
lemma listToConstDestList_get (l : List (index S)) (f : Fin l.length → Fin 2) :
|
||||
(listToConstDestList l f).get = (fun i => (f i, l.get i)) ∘ Fin.cast (by simp) := by
|
||||
induction l with
|
||||
|
@ -336,18 +447,84 @@ lemma listToConstDestList_get (l : List (index S)) (f : Fin l.length → Fin 2)
|
|||
funext i
|
||||
exact Fin.elim0 i
|
||||
| cons i l ih =>
|
||||
simp [listToConstDestList]
|
||||
simp only [listToConstDestList, List.length_cons, Fin.zero_eta, List.get_eq_getElem]
|
||||
funext x
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨x + 1, h⟩ =>
|
||||
simp
|
||||
simp only [List.length_cons, List.get_eq_getElem, Prod.mk.eta, List.getElem_cons_succ,
|
||||
Function.comp_apply, Fin.cast_mk]
|
||||
change (listToConstDestList l _).get _ = _
|
||||
rw [ih]
|
||||
simp
|
||||
|
||||
lemma listToConstDestList_timeOrder (l : List (index S)) (f : Fin l.length → Fin 2) :
|
||||
List.insertionSort ConstDestAlgebra.timeOrderRel (listToConstDestList l f) =
|
||||
listToConstDestList (List.insertionSort timeOrderRel l)
|
||||
(f ∘ (HepLean.List.insertionSortEquiv (timeOrderRel) l).symm) := by
|
||||
let l1 := List.insertionSort (ConstDestAlgebra.timeOrderRel) (listToConstDestList l f)
|
||||
let l2 := listToConstDestList (List.insertionSort timeOrderRel l)
|
||||
(f ∘ (HepLean.List.insertionSortEquiv (timeOrderRel) l).symm)
|
||||
change l1 = l2
|
||||
have hlen : l1.length = l2.length := by
|
||||
simp [l1, l2]
|
||||
have hget : l1.get = l2.get ∘ Fin.cast hlen := by
|
||||
rw [← HepLean.List.insertionSortEquiv_get]
|
||||
rw [listToConstDestList_get]
|
||||
rw [listToConstDestList_get]
|
||||
rw [← HepLean.List.insertionSortEquiv_get]
|
||||
funext i
|
||||
simp only [List.get_eq_getElem, Function.comp_apply, Fin.coe_cast, Fin.cast_trans]
|
||||
congr 2
|
||||
· rw [listToConstDestList_insertionSortEquiv]
|
||||
simp
|
||||
· rw [listToConstDestList_insertionSortEquiv]
|
||||
simp
|
||||
apply List.ext_get hlen
|
||||
rw [hget]
|
||||
simp
|
||||
|
||||
lemma listToConstDestList_koszulSignInsert (q : index S → Fin 2) (l : List (index S)) (i : index S)
|
||||
(f : Fin l.length → Fin 2) (a : Fin 2) :
|
||||
koszulSignInsert ConstDestAlgebra.timeOrderRel (fun i => q i.2) (a, i)
|
||||
(listToConstDestList l f) = koszulSignInsert timeOrderRel q i l := by
|
||||
induction l with
|
||||
| nil =>
|
||||
simp [listToConstDestList, koszulSignInsert]
|
||||
| cons j s ih =>
|
||||
simp only [koszulSignInsert, List.length_cons, Fin.zero_eta, Prod.mk.eta, Fin.isValue]
|
||||
by_cases hr : ConstDestAlgebra.timeOrderRel (a, i) (f ⟨0, by simp⟩, j)
|
||||
· rw [if_pos]
|
||||
· rw [if_pos]
|
||||
· exact hr
|
||||
· exact hr
|
||||
· rw [if_neg]
|
||||
· nth_rewrite 2 [if_neg]
|
||||
· rw [ih (f ∘ Fin.succ)]
|
||||
· exact hr
|
||||
· exact hr
|
||||
|
||||
lemma listToConstDestList_koszulSign (q : index S → Fin 2) (l : List (index S))
|
||||
(f : Fin l.length → Fin 2) :
|
||||
koszulSign ConstDestAlgebra.timeOrderRel (fun i => q i.2) (listToConstDestList l f) =
|
||||
koszulSign timeOrderRel q l := by
|
||||
induction l with
|
||||
| nil => rfl
|
||||
| cons i l ih =>
|
||||
simp only [koszulSign, List.length_cons, Fin.zero_eta, Prod.mk.eta]
|
||||
rw [ih]
|
||||
simp only [mul_eq_mul_right_iff]
|
||||
apply Or.inl
|
||||
exact listToConstDestList_koszulSignInsert q l i _ _
|
||||
|
||||
/-- The map from the field algebra to the algebra of constructive and destructive fields. -/
|
||||
def toConstDestAlgebra : FieldAlgebra S →ₐ[ℂ] ConstDestAlgebra S :=
|
||||
FreeAlgebra.lift ℂ (fun i => FreeAlgebra.ι ℂ (0, i) + FreeAlgebra.ι ℂ (1, i))
|
||||
|
||||
@[simp]
|
||||
lemma toConstDestAlgebra_ι (i : index S) : toConstDestAlgebra (FreeAlgebra.ι ℂ i) =
|
||||
FreeAlgebra.ι ℂ (0, i) + FreeAlgebra.ι ℂ (1, i) := by
|
||||
simp [toConstDestAlgebra]
|
||||
|
||||
lemma toConstDestAlgebra_single (x : ℂ) : (l : FreeMonoid (index S)) →
|
||||
toConstDestAlgebra (FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single l x))
|
||||
|
@ -379,7 +556,8 @@ lemma toConstDestAlgebra_single (x : ℂ) : (l : FreeMonoid (index S)) →
|
|||
congr
|
||||
simp only [FreeMonoid.lift, FreeMonoid.prodAux, FreeMonoid.toList, Equiv.coe_fn_mk,
|
||||
MonoidHom.coe_mk, OneHom.coe_mk]
|
||||
change List.foldl (fun x1 x2 => x1 * x2) (FreeAlgebra.ι ℂ i) (List.map (FreeAlgebra.ι ℂ) l) = _
|
||||
change List.foldl (fun x1 x2 => x1 * x2)
|
||||
(FreeAlgebra.ι ℂ i) (List.map (FreeAlgebra.ι ℂ) l) = _
|
||||
match l with
|
||||
| [] =>
|
||||
simp only [List.map_nil, List.foldl_nil, ne_eq, FreeAlgebra.ι_ne_zero, not_false_eq_true,
|
||||
|
@ -438,144 +616,10 @@ lemma toWickAlgebra_factor_toConstDestAlgebra :
|
|||
subst left right
|
||||
exact Eq.symm (𝓞.ψc_ψd f x_1)
|
||||
|
||||
/-- The time ordering relation in the field algebra. -/
|
||||
def timeOrderRel : index S → index S → Prop := fun x y => x.2 0 ≤ y.2 0
|
||||
|
||||
noncomputable section
|
||||
|
||||
/-- The time ordering relation in the field algebra is decidable. -/
|
||||
instance : DecidableRel (@timeOrderRel S) :=
|
||||
fun a b => Real.decidableLE (a.2 0) (b.2 0)
|
||||
|
||||
/-- The time ordering in the field algebra. -/
|
||||
def timeOrder (q : index S → Fin 2) : S.FieldAlgebra →ₗ[ℂ] S.FieldAlgebra :=
|
||||
koszulOrder timeOrderRel q
|
||||
|
||||
lemma listToConstDestList_insertionSortEquiv (l : List (index S))
|
||||
(f : Fin l.length → Fin 2) :
|
||||
(HepLean.List.insertionSortEquiv ConstDestAlgebra.timeOrderRel (listToConstDestList l f))
|
||||
= (Fin.castOrderIso (by simp)).toEquiv.trans ((HepLean.List.insertionSortEquiv timeOrderRel l).trans
|
||||
(Fin.castOrderIso (by simp)).toEquiv) := by
|
||||
induction l with
|
||||
| nil =>
|
||||
simp [listToConstDestList, HepLean.List.insertionSortEquiv]
|
||||
| cons i l ih =>
|
||||
simp [listToConstDestList]
|
||||
conv_lhs => simp [HepLean.List.insertionSortEquiv]
|
||||
have h1 (l' : List (ConstDestAlgebra.index S)) :
|
||||
(HepLean.List.insertEquiv ConstDestAlgebra.timeOrderRel (f ⟨0, by simp⟩, i.1, i.2) l') =
|
||||
(Fin.castOrderIso (by simp)).toEquiv.trans
|
||||
((HepLean.List.insertEquiv timeOrderRel (i.1, i.2) (l'.unzip).2).trans
|
||||
(Fin.castOrderIso (by simp [List.orderedInsert_length])).toEquiv) := by
|
||||
induction l' with
|
||||
| nil =>
|
||||
simp [HepLean.List.insertEquiv]
|
||||
rfl
|
||||
| cons j l' ih' =>
|
||||
by_cases hr : ConstDestAlgebra.timeOrderRel (f ⟨0, by simp⟩, i) j
|
||||
· rw [HepLean.List.insertEquiv_cons_pos]
|
||||
· erw [HepLean.List.insertEquiv_cons_pos]
|
||||
· rfl
|
||||
· exact hr
|
||||
· exact hr
|
||||
· rw [HepLean.List.insertEquiv_cons_neg]
|
||||
· erw [HepLean.List.insertEquiv_cons_neg]
|
||||
· simp
|
||||
erw [ih']
|
||||
ext x
|
||||
simp
|
||||
congr 2
|
||||
match x with
|
||||
| ⟨0, h⟩ => rfl
|
||||
| ⟨1, h⟩ => rfl
|
||||
| ⟨Nat.succ (Nat.succ x), h⟩ => rfl
|
||||
· exact hr
|
||||
· exact hr
|
||||
erw [h1]
|
||||
rw [ih]
|
||||
simp
|
||||
ext x
|
||||
conv_rhs => simp [HepLean.List.insertionSortEquiv]
|
||||
simp
|
||||
have h2' (i : ConstDestAlgebra.index S) (l' : List (ConstDestAlgebra.index S)) :
|
||||
(List.orderedInsert ConstDestAlgebra.timeOrderRel i l').unzip.2 =
|
||||
List.orderedInsert timeOrderRel i.2 l'.unzip.2 := by
|
||||
induction l' with
|
||||
| nil =>
|
||||
simp [HepLean.List.insertEquiv]
|
||||
| cons j l' ih' =>
|
||||
by_cases hij : ConstDestAlgebra.timeOrderRel i j
|
||||
· rw [List.orderedInsert_of_le]
|
||||
· erw [List.orderedInsert_of_le]
|
||||
· simp
|
||||
· exact hij
|
||||
· exact hij
|
||||
· simp [hij]
|
||||
have hn : ¬ timeOrderRel i.2 j.2 := hij
|
||||
simp [hn]
|
||||
simpa using ih'
|
||||
have h2 (l' : List (ConstDestAlgebra.index S)) :
|
||||
(List.insertionSort ConstDestAlgebra.timeOrderRel l').unzip.2 =
|
||||
List.insertionSort timeOrderRel l'.unzip.2 := by
|
||||
induction l' with
|
||||
| nil =>
|
||||
simp [HepLean.List.insertEquiv]
|
||||
| cons i l' ih' =>
|
||||
simp
|
||||
simp at h2'
|
||||
rw [h2']
|
||||
congr
|
||||
simpa using ih'
|
||||
rw [HepLean.List.insertEquiv_congr _ _ _ (h2 _)]
|
||||
simp
|
||||
have h3 : (List.insertionSort timeOrderRel (listToConstDestList l (f ∘ Fin.succ)).unzip.2) =
|
||||
List.insertionSort timeOrderRel l := by
|
||||
congr
|
||||
have h3' (l : List (index S)) (f : Fin l.length → Fin 2) :
|
||||
(listToConstDestList l (f)).unzip.2 = l := by
|
||||
induction l with
|
||||
| nil => rfl
|
||||
| cons i l ih' =>
|
||||
simp [listToConstDestList]
|
||||
simpa using ih' (f ∘ Fin.succ)
|
||||
rw [h3']
|
||||
rw [HepLean.List.insertEquiv_congr _ _ _ h3]
|
||||
simp
|
||||
rfl
|
||||
|
||||
lemma listToConstDestList_timeOrder (l : List (index S))
|
||||
(f : Fin l.length → Fin 2) :
|
||||
List.insertionSort ConstDestAlgebra.timeOrderRel (listToConstDestList l f) =
|
||||
listToConstDestList (List.insertionSort timeOrderRel l)
|
||||
(f ∘ (HepLean.List.insertionSortEquiv (timeOrderRel) l).symm) := by
|
||||
let l1 := List.insertionSort (ConstDestAlgebra.timeOrderRel) (listToConstDestList l f)
|
||||
let l2 := listToConstDestList (List.insertionSort timeOrderRel l)
|
||||
(f ∘ (HepLean.List.insertionSortEquiv (timeOrderRel) l).symm)
|
||||
change l1 = l2
|
||||
have hlen : l1.length = l2.length := by
|
||||
simp [l1, l2]
|
||||
have hget : l1.get = l2.get ∘ Fin.cast hlen := by
|
||||
rw [← HepLean.List.insertionSortEquiv_get]
|
||||
rw [listToConstDestList_get]
|
||||
rw [listToConstDestList_get]
|
||||
rw [← HepLean.List.insertionSortEquiv_get]
|
||||
funext i
|
||||
simp
|
||||
congr 2
|
||||
· rw [listToConstDestList_insertionSortEquiv]
|
||||
simp
|
||||
· rw [listToConstDestList_insertionSortEquiv]
|
||||
simp
|
||||
apply List.ext_get hlen
|
||||
rw [hget]
|
||||
simp
|
||||
|
||||
|
||||
/-f ∘ (HepLean.List.insertionSortEquiv (timeOrder q) l).symm.toFun-/
|
||||
/-
|
||||
lemma timeOrder_comm_toConstDestAlgebra (q : index S → Fin 2)
|
||||
(q' : ConstDestAlgebra.index S → Fin 2) :
|
||||
(ConstDestAlgebra.timeOrder q').comp toConstDestAlgebra.toLinearMap =
|
||||
/-- Time ordering fields and then mapping to constructive and destructive fields is the same as
|
||||
mapping to constructive and destructive fields and then time ordering. -/
|
||||
lemma timeOrder_comm_toConstDestAlgebra (q : index S → Fin 2) :
|
||||
(ConstDestAlgebra.timeOrder (fun i => q i.2)).comp toConstDestAlgebra.toLinearMap =
|
||||
toConstDestAlgebra.toLinearMap.comp (timeOrder q) := by
|
||||
let e : S.FieldAlgebra ≃ₗ[ℂ] MonoidAlgebra ℂ (FreeMonoid (index S)) :=
|
||||
FreeAlgebra.equivMonoidAlgebraFreeMonoid.toLinearEquiv
|
||||
|
@ -584,21 +628,22 @@ lemma timeOrder_comm_toConstDestAlgebra (q : index S → Fin 2)
|
|||
intro l
|
||||
apply LinearMap.ext
|
||||
intro x
|
||||
simp [e, toConstDestAlgebra_single, timeOrder]
|
||||
simp [FreeMonoid.length, List.length_insertionSort]
|
||||
let ew := Equiv.piCongrLeft' (fun a => Fin 2)
|
||||
(Fin.castOrderIso (List.length_insertionSort timeOrderRel l).symm).toEquiv
|
||||
rw [← ew.sum_comp
|
||||
(α := FreeAlgebra ℂ (ConstDestAlgebra.index S)) ]
|
||||
simp only [AlgEquiv.toLinearEquiv_symm, AlgEquiv.toLinearEquiv_toLinearMap, LinearMap.coe_comp,
|
||||
Function.comp_apply, MonoidAlgebra.lsingle_apply, AlgEquiv.toLinearMap_apply,
|
||||
AlgHom.toLinearMap_apply, toConstDestAlgebra_single, map_sum, timeOrder, koszulOrder_single, e]
|
||||
simp only [FreeMonoid.length]
|
||||
let ew := Equiv.piCongrLeft' (fun _ => Fin 2)
|
||||
(HepLean.List.insertionSortEquiv (timeOrderRel) l)
|
||||
rw [← ew.sum_comp (α := FreeAlgebra ℂ (ConstDestAlgebra.index S))]
|
||||
congr
|
||||
funext f
|
||||
simp [ConstDestAlgebra.timeOrder]
|
||||
simp only [ConstDestAlgebra.timeOrder, koszulOrder_single, EmbeddingLike.apply_eq_iff_eq]
|
||||
congr 1
|
||||
·
|
||||
· sorry
|
||||
-/
|
||||
|
||||
end
|
||||
· rw [listToConstDestList_timeOrder]
|
||||
simp only [ew]
|
||||
rfl
|
||||
· simp only [mul_eq_mul_right_iff]
|
||||
exact Or.inl (listToConstDestList_koszulSign q l f)
|
||||
|
||||
end FieldAlgebra
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue