feat: add properties of spacetime
This commit is contained in:
parent
4ff3d9bc0b
commit
b9c20861d1
2 changed files with 160 additions and 2 deletions
79
HepLean/StandardModel/CliffordAlgebra.lean
Normal file
79
HepLean/StandardModel/CliffordAlgebra.lean
Normal file
|
@ -0,0 +1,79 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.StandardModel.Basic
|
||||
/-!
|
||||
# The Clifford Algebra
|
||||
|
||||
This file defines the Gamma matrices.
|
||||
|
||||
## TODO
|
||||
|
||||
- Prove that the algebra generated by the gamma matrices is ismorphic to the
|
||||
Clifford algebra assocaited with spacetime.
|
||||
-
|
||||
-/
|
||||
|
||||
namespace StandardModel
|
||||
open Complex
|
||||
|
||||
noncomputable section diracRepresentation
|
||||
|
||||
def γ0 : Matrix (Fin 4) (Fin 4) ℂ :=
|
||||
![![1, 0, 0, 0], ![0, 1, 0, 0], ![0, 0, -1, 0], ![0, 0, 0, -1]]
|
||||
|
||||
def γ1 : Matrix (Fin 4) (Fin 4) ℂ :=
|
||||
![![0, 0, 0, 1], ![0, 0, 1, 0], ![0, -1, 0, 0], ![-1, 0, 0, 0]]
|
||||
|
||||
def γ2 : Matrix (Fin 4) (Fin 4) ℂ :=
|
||||
![![0, 0, 0, - I], ![0, 0, I, 0], ![0, I, 0, 0], ![-I, 0, 0, 0]]
|
||||
|
||||
def γ3 : Matrix (Fin 4) (Fin 4) ℂ :=
|
||||
![![0, 0, 1, 0], ![0, 0, 0, -1], ![-1, 0, 0, 0], ![0, 1, 0, 0]]
|
||||
|
||||
def γ5 : Matrix (Fin 4) (Fin 4) ℂ := I • (γ0 * γ1 * γ2 * γ3)
|
||||
|
||||
@[simp]
|
||||
def γ : Fin 4 → Matrix (Fin 4) (Fin 4) ℂ := ![γ0, γ1, γ2, γ3]
|
||||
|
||||
|
||||
namespace γ
|
||||
|
||||
variable (μ : Fin 4)
|
||||
|
||||
|
||||
|
||||
|
||||
/-- The trace of the gamma matrices is zero. -/
|
||||
lemma trace_eq_zero (μ : Fin 4) : Matrix.trace (γ μ) = 0 := by
|
||||
fin_cases μ
|
||||
<;> simp [γ, γ0, γ1, γ2, γ3]
|
||||
<;> rw [Matrix.trace, Fin.sum_univ_four]
|
||||
<;> simp
|
||||
any_goals rfl
|
||||
change 0 + 0 = 0
|
||||
simp [add_zero]
|
||||
|
||||
|
||||
|
||||
@[simp]
|
||||
def γSet : Set (Matrix (Fin 4) (Fin 4) ℂ) := {γ i | i : Fin 4}
|
||||
|
||||
lemma γ_in_γSet (μ : Fin 4) : γ μ ∈ γSet := by
|
||||
simp [γSet]
|
||||
|
||||
def diracAlgebra : Subalgebra ℝ (Matrix (Fin 4) (Fin 4) ℂ) :=
|
||||
Algebra.adjoin ℝ γSet
|
||||
|
||||
lemma γSet_subset_diracAlgebra : γSet ⊆ diracAlgebra :=
|
||||
Algebra.subset_adjoin
|
||||
|
||||
lemma γ_in_diracAlgebra (μ : Fin 4) : γ μ ∈ diracAlgebra :=
|
||||
γSet_subset_diracAlgebra (γ_in_γSet μ)
|
||||
|
||||
end γ
|
||||
|
||||
end diracRepresentation
|
||||
end StandardModel
|
Loading…
Add table
Add a link
Reference in a new issue