refactor: basic golfing and renaming

This commit is contained in:
jstoobysmith 2025-01-03 05:12:54 +00:00
parent dcfc4b1318
commit bab9f10763
8 changed files with 177 additions and 188 deletions

View file

@ -9,15 +9,11 @@ import HepLean.Lorentz.ComplexTensor.PauliMatrices.Basic
## Pauli matrices and the basis of complex Lorentz tensors
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
noncomputable section
@ -342,40 +338,38 @@ lemma pauliMatrix_contr_down_0 :
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
enter [1, 1, 1, 1, 1, 1, 1, 1]
rw [contrBasisVectorMul_pos (by decide)]
rw [contrBasisVectorMul_pos _]
conv =>
enter [1, 1, 1, 1, 1, 1, 1, 2, 1]
rw [contrBasisVectorMul_pos (by decide)]
rw [contrBasisVectorMul_pos _]
conv =>
enter [1, 1, 1, 1, 1, 1, 2, 1]
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
enter [1, 1, 1, 1, 1, 2, 1]
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
enter [1, 1, 1, 1, 2, 2, 1]
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
enter [1, 1, 1, 2, 2, 1]
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
enter [1, 1, 2, 1]
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
enter [1, 2, 2, 1]
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
congr 1
· rw [basisVectorContrPauli]
congr 1
funext k
fin_cases k <;> rfl
decide
· rw [basisVectorContrPauli]
congr 1
funext k
fin_cases k <;> rfl
decide
lemma pauliMatrix_contr_down_1 :
{(basisVector ![Color.down, Color.down] fun _ => 1) | ν μ ⊗
@ -386,29 +380,29 @@ lemma pauliMatrix_contr_down_1 :
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
enter [1, 1, 1, 1, 1, 1, 1]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
enter [1, 1, 1, 1, 1, 1, 1, 2, 1]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
enter [1, 1, 1, 1, 1, 1, 2, 1]
rw [contrBasisVectorMul_pos _]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
enter [1, 1, 1, 1, 1, 2, 1]
rw [contrBasisVectorMul_pos _]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
enter [1, 1, 1, 1, 2, 2, 1]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
enter [1, 1, 1, 2, 2, 1]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
enter [1, 1, 2, 1]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
enter [1, 2, 2, 1]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
@ -429,29 +423,29 @@ lemma pauliMatrix_contr_down_2 :
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
enter [1, 1, 1, 1, 1, 1, 1, 1]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
enter [1, 1, 1, 1, 1, 1, 1, 2, 1]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
enter [1, 1, 1, 1, 1, 1, 2, 1]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
rw [contrBasisVectorMul_pos _]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
rw [contrBasisVectorMul_pos _]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
@ -470,28 +464,28 @@ lemma pauliMatrix_contr_down_3 :
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_pos (by decide)]
rw [contrBasisVectorMul_pos _]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_pos (by decide)]
rw [contrBasisVectorMul_pos _]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
@ -535,16 +529,16 @@ lemma pauliCo_basis_expand : pauliCo
simp only [tensorNode_tensor, add_tensor, smul_tensor]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, neg_smul, one_smul]
conv =>
lhs; lhs;
enter [1, 1]
rw [pauliMatrix_contr_down_0]
conv =>
lhs; rhs; lhs; rhs;
enter [1, 2, 1, 1]
rw [pauliMatrix_contr_down_1]
conv =>
lhs; rhs; rhs; lhs; rhs;
enter [1, 2, 2, 1, 1]
rw [pauliMatrix_contr_down_2]
conv =>
lhs; rhs; rhs; rhs; rhs;
enter [1, 2, 2, 2, 1]
rw [pauliMatrix_contr_down_3]
simp only [neg_smul, one_smul]
abel