fix: Correct tensor evaluation
This commit is contained in:
parent
7fc850cc38
commit
baf5169171
2 changed files with 18 additions and 2 deletions
|
@ -89,7 +89,8 @@ lemma contr_rank_2_symm {T1 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
|||
rw [perm_perm]
|
||||
rw [perm_eq_id]
|
||||
· rfl
|
||||
· rfl
|
||||
· apply OverColor.Hom.ext
|
||||
rfl
|
||||
· apply OverColor.Hom.ext
|
||||
ext x
|
||||
exact Fin.elim0 x
|
||||
|
@ -104,6 +105,7 @@ lemma contr_rank_2_symm' {T1 : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
|
|||
ext x
|
||||
exact Fin.elim0 x
|
||||
|
||||
set_option maxRecDepth 20000 in
|
||||
/-- Contracting a rank-2 anti-symmetric tensor with a rank-2 symmetric tensor gives zero. -/
|
||||
lemma antiSymm_contr_symm {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||||
{S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
|
||||
|
@ -120,7 +122,20 @@ lemma antiSymm_contr_symm {A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V
|
|||
rw [contr_tensor_eq (contr_tensor_eq (neg_fst_prod _ _))]
|
||||
rw [contr_tensor_eq (neg_contr _)]
|
||||
rw [neg_contr]
|
||||
rfl
|
||||
rw [neg_tensor]
|
||||
apply congrArg
|
||||
rw [contr_tensor_eq (contr_tensor_eq (prod_perm_left _ _ _ _))]
|
||||
rw [contr_tensor_eq (perm_contr _ _)]
|
||||
rw [perm_contr]
|
||||
rw [perm_tensor_eq (contr_tensor_eq (contr_tensor_eq (prod_perm_right _ _ _ _)))]
|
||||
rw [perm_tensor_eq (contr_tensor_eq (perm_contr _ _))]
|
||||
rw [perm_tensor_eq (perm_contr _ _)]
|
||||
rw [perm_perm]
|
||||
nth_rewrite 1 [perm_tensor_eq (contr_contr _ _ _)]
|
||||
rw [perm_perm]
|
||||
rw [perm_eq_id]
|
||||
· rfl
|
||||
· rfl
|
||||
|
||||
lemma symm_contr_antiSymm {S : (Lorentz.complexCo ⊗ Lorentz.complexCo).V}
|
||||
{A : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
||||
|
|
|
@ -448,6 +448,7 @@ noncomputable section
|
|||
Note: This function is not fully defined yet. -/
|
||||
def tensor : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → S.F.obj (OverColor.mk c) := fun
|
||||
| tensorNode t => t
|
||||
| twoNode t => (OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom t
|
||||
| constTwoNode t => (OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom (t.hom (1 : S.k))
|
||||
| add t1 t2 => t1.tensor + t2.tensor
|
||||
| perm σ t => (S.F.map σ).hom t.tensor
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue