refactor: Lint
This commit is contained in:
parent
d1e1fa6382
commit
bb2b7804f2
2 changed files with 15 additions and 11 deletions
|
@ -30,7 +30,8 @@ def constAbs (S : (PureU1 n).charges) : Prop := ∀ i j, (S i) ^ 2 = (S j) ^ 2
|
|||
|
||||
lemma constAbs_perm (S : (PureU1 n).charges) (M :(FamilyPermutations n).group) :
|
||||
constAbs ((FamilyPermutations n).rep M S) ↔ constAbs S := by
|
||||
simp
|
||||
simp only [constAbs, PureU1_numberCharges, FamilyPermutations, permGroup, permCharges,
|
||||
MonoidHom.coe_mk, OneHom.coe_mk, chargeMap_apply]
|
||||
apply Iff.intro
|
||||
intro h i j
|
||||
have h2 := h (M.toFun i) (M.toFun j)
|
||||
|
@ -115,7 +116,7 @@ lemma boundary_accGrav' (k : Fin n) : accGrav n.succ S =
|
|||
simp [accGrav]
|
||||
erw [Finset.sum_equiv (Fin.castIso (boundary_split k)).toEquiv]
|
||||
intro i
|
||||
simp
|
||||
simp only [Fin.val_succ, mem_univ, RelIso.coe_fn_toEquiv]
|
||||
intro i
|
||||
simp
|
||||
rfl
|
||||
|
@ -131,7 +132,8 @@ lemma boundary_accGrav'' (k : Fin n) (hk : boundary S k) :
|
|||
S (Fin.cast (boundary_split k) (Fin.natAdd (k.succ.val) i)) = S k.succ := by
|
||||
apply gt_eq hS (le_of_lt hk.right) (by rw [Fin.le_def]; simp)
|
||||
simp only [hfst, hsnd]
|
||||
simp
|
||||
simp only [Fin.val_succ, sum_const, card_fin, nsmul_eq_mul, cast_add, cast_one,
|
||||
succ_sub_succ_eq_sub, Fin.is_le', cast_sub]
|
||||
rw [boundary_castSucc hS hk, boundary_succ hS hk]
|
||||
ring
|
||||
|
||||
|
@ -175,8 +177,7 @@ lemma AFL_hasBoundary (h : A.val (0 : Fin n.succ) ≠ 0) : hasBoundary A.val :=
|
|||
simp_all
|
||||
|
||||
lemma AFL_odd_noBoundary {A : (PureU1 (2 * n + 1)).LinSols} (h : constAbsSorted A.val)
|
||||
(hA : A.val (0 : Fin (2*n +1)) ≠ 0) :
|
||||
¬ hasBoundary A.val := by
|
||||
(hA : A.val (0 : Fin (2*n +1)) ≠ 0) : ¬ hasBoundary A.val := by
|
||||
by_contra hn
|
||||
obtain ⟨k, hk⟩ := hn
|
||||
have h0 := boundary_accGrav'' h k hk
|
||||
|
@ -185,7 +186,7 @@ lemma AFL_odd_noBoundary {A : (PureU1 (2 * n + 1)).LinSols} (h : constAbsSorted
|
|||
simp [hA] at h0
|
||||
have h1 : 2 * n = 2 * k.val + 1 := by
|
||||
rw [← @Nat.cast_inj ℚ]
|
||||
simp
|
||||
simp only [cast_mul, cast_ofNat, cast_add, cast_one]
|
||||
linear_combination - h0
|
||||
omega
|
||||
|
||||
|
@ -200,7 +201,8 @@ theorem AFL_odd (A : (PureU1 (2 * n + 1)).LinSols) (h : constAbsSorted A.val) :
|
|||
exact is_zero h (AFL_odd_zero h)
|
||||
|
||||
lemma AFL_even_Boundary {A : (PureU1 (2 * n.succ)).LinSols} (h : constAbsSorted A.val)
|
||||
(hA : A.val (0 : Fin (2 * n.succ)) ≠ 0) {k : Fin (2 * n + 1)} (hk : boundary A.val k) : k.val = n := by
|
||||
(hA : A.val (0 : Fin (2 * n.succ)) ≠ 0) {k : Fin (2 * n + 1)} (hk : boundary A.val k) :
|
||||
k.val = n := by
|
||||
have h0 := boundary_accGrav'' h k hk
|
||||
change ∑ i : Fin (succ (Nat.mul 2 n + 1)), A.val i = _ at h0
|
||||
erw [pureU1_linear A] at h0
|
||||
|
@ -215,13 +217,14 @@ lemma AFL_even_below' {A : (PureU1 (2 * n.succ)).LinSols} (h : constAbsSorted A.
|
|||
rw [← boundary_castSucc h hk]
|
||||
apply lt_eq h (le_of_lt hk.left)
|
||||
rw [Fin.le_def]
|
||||
simp
|
||||
simp only [PureU1_numberCharges, Fin.coe_cast, Fin.coe_castAdd, mul_eq, Fin.coe_castSucc]
|
||||
rw [AFL_even_Boundary h hA hk]
|
||||
omega
|
||||
|
||||
lemma AFL_even_below (A : (PureU1 (2 * n.succ)).LinSols) (h : constAbsSorted A.val)
|
||||
(i : Fin n.succ) :
|
||||
A.val (Fin.cast (split_equal n.succ) (Fin.castAdd n.succ i)) = A.val (0 : Fin (2*n.succ)) := by
|
||||
A.val (Fin.cast (split_equal n.succ) (Fin.castAdd n.succ i))
|
||||
= A.val (0 : Fin (2*n.succ)) := by
|
||||
by_cases hA : A.val (0 : Fin (2*n.succ)) = 0
|
||||
rw [is_zero h hA]
|
||||
simp
|
||||
|
@ -236,7 +239,7 @@ lemma AFL_even_above' {A : (PureU1 (2 * n.succ)).LinSols} (h : constAbsSorted A.
|
|||
rw [← boundary_succ h hk]
|
||||
apply gt_eq h (le_of_lt hk.right)
|
||||
rw [Fin.le_def]
|
||||
simp
|
||||
simp only [mul_eq, Fin.val_succ, PureU1_numberCharges, Fin.coe_cast, Fin.coe_natAdd]
|
||||
rw [AFL_even_Boundary h hA hk]
|
||||
omega
|
||||
|
||||
|
|
|
@ -31,7 +31,8 @@ def sort {n : ℕ} (S : (PureU1 n).charges) : (PureU1 n).charges :=
|
|||
((FamilyPermutations n).rep (Tuple.sort S).symm S)
|
||||
|
||||
lemma sort_sorted {n : ℕ} (S : (PureU1 n).charges) : sorted (sort S) := by
|
||||
simp
|
||||
simp only [sorted, PureU1_numberCharges, sort, FamilyPermutations, permGroup, permCharges,
|
||||
MonoidHom.coe_mk, OneHom.coe_mk, chargeMap_apply]
|
||||
intro i j hij
|
||||
exact Tuple.monotone_sort S hij
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue