feat: Def of general metric tensor and unit tensor

This commit is contained in:
jstoobysmith 2024-11-13 14:24:59 +00:00
parent 81817fc797
commit bbb4c020e9
6 changed files with 921 additions and 530 deletions

View file

@ -124,6 +124,7 @@ import HepLean.Tensors.OverColor.Discrete
import HepLean.Tensors.OverColor.Functors
import HepLean.Tensors.OverColor.Iso
import HepLean.Tensors.OverColor.Lift
import HepLean.Tensors.TensorSpecies.Basic
import HepLean.Tensors.Tree.Basic
import HepLean.Tensors.Tree.Dot
import HepLean.Tensors.Tree.Elab

View file

@ -111,6 +111,44 @@ lemma pairIsoSep_tmul {c1 c2 : C} (x : F.obj (Discrete.mk c1)) (y : F.obj (Discr
HepLean.PiTensorProduct.elimPureTensor]
exact (LinearEquiv.eq_symm_apply _).mp rfl
lemma pairIsoSep_inv_tprod {c1 c2 : C} (fx : (i : (𝟭 Type).obj (OverColor.mk ![c1, c2]).left) →
CoeSort.coe (F.obj { as := (OverColor.mk ![c1, c2]).hom i })) :
(pairIsoSep F).inv.hom (PiTensorProduct.tprod k fx) = fx (0 : Fin 2) ⊗ₜ fx (1 : Fin 2) := by
simp [pairIsoSep]
erw [lift.map_tprod]
erw [lift.μIso_inv_tprod]
change (((forgetLiftApp F c1).hom.hom (((lift.obj F).map (mkIso _).inv).hom
((PiTensorProduct.tprod k) fun i =>
(lift.discreteFunctorMapEqIso F _) (fx ((Hom.toEquiv fin2Iso.hom).symm (Sum.inl i)))))) ⊗ₜ[k]
(forgetLiftApp F c2).hom.hom ( ((lift.obj F).map (mkIso _).inv).hom ((PiTensorProduct.tprod k)
fun i =>
(lift.discreteFunctorMapEqIso F _) (fx ((Hom.toEquiv fin2Iso.hom).symm (Sum.inr i)))))) = _
congr 1
· rw [lift.map_tprod]
rw [forgetLiftApp_hom_hom_apply_eq]
apply congrArg
funext x
match x with
| (0 : Fin 1) =>
simp only [mk_hom, Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, Matrix.cons_val_zero,
equivToIso_mkIso_inv, Equiv.refl_symm, lift.discreteFunctorMapEqIso, eqToIso_refl,
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Matrix.cons_val_one,
Matrix.head_cons, instMonoidalCategoryStruct_tensorObj_left, Functor.id_obj,
LinearEquiv.ofLinear_apply]
rfl
· rw [lift.map_tprod]
rw [forgetLiftApp_hom_hom_apply_eq]
apply congrArg
funext x
match x with
| (0 : Fin 1) =>
simp only [mk_hom, Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, Matrix.cons_val_one,
Matrix.head_cons, equivToIso_mkIso_inv, Equiv.refl_symm, lift.discreteFunctorMapEqIso,
eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
Matrix.cons_val_zero, instMonoidalCategoryStruct_tensorObj_left, Functor.id_obj,
LinearEquiv.ofLinear_apply]
rfl
/-- The isomorphism between
`F.obj (Discrete.mk c1) ⊗ F.obj (Discrete.mk c2) ⊗ F.obj (Discrete.mk c3)` and
`(lift.obj F).obj (OverColor.mk ![c1,c2])` formed by the tensorate. -/
@ -175,6 +213,26 @@ lemma pairτ_tmul {c : C} (x : F.obj (Discrete.mk c))
def τPair (τ : C → C) : Discrete C ⥤ Rep k G :=
((Discrete.functor (Discrete.mk ∘ τ) : Discrete C ⥤ Discrete C) ⋙ F) ⊗ F
/-!
## A need lemma about rep
-/
@[simp]
lemma rep_iso_inv_hom_apply (x y : Rep k G) (f : x ≅ y) (i : x) :
f.inv.hom (f.hom.hom i) = i := by
change (f.hom ≫ f.inv).hom i = i
simp
@[simp]
lemma rep_iso_hom_inv_apply (x y : Rep k G) (f : x ≅ y) (i : y) :
f.hom.hom (f.inv.hom i) = i := by
change (f.inv ≫ f.hom).hom i = i
simp
end
end Discrete
end OverColor

View file

@ -0,0 +1,543 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.OverColor.Iso
import HepLean.Tensors.OverColor.Discrete
import HepLean.Tensors.OverColor.Lift
import Mathlib.CategoryTheory.Monoidal.NaturalTransformation
/-!
# Tensor species
- A tensor species is a structure including all of the ingredients needed to define a type of
tensor.
- Examples of tensor species will include real Lorentz tensors, complex Lorentz tensors, and
Einstien tensors.
- Tensor species are built upon symmetric monoidal categories.
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
/-- The structure of a type of tensors e.g. Lorentz tensors, ordinary tensors
(vectors and matrices), complex Lorentz tensors. -/
structure TensorSpecies where
/-- The commutative ring over which we want to consider the tensors to live in,
usually `` or ``. -/
k : Type
/-- An instance of `k` as a commutative ring. -/
k_commRing : CommRing k
/-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,). -/
G : Type
/-- An instance of `G` as a group. -/
G_group : Group G
/-- The colors of indices e.g. up or down. -/
C : Type
/-- A functor from `C` to `Rep k G` giving our building block representations.
Equivalently a function `C → Re k G`. -/
FD : Discrete C ⥤ Rep k G
/-- A specification of the dimension of each color in C. This will be used for explicit
evaluation of tensors. -/
repDim : C →
/-- repDim is not zero for any color. This allows casting of `` to `Fin (S.repDim c)`. -/
repDim_neZero (c : C) : NeZero (repDim c)
/-- A basis for each Module, determined by the evaluation map. -/
basis : (c : C) → Basis (Fin (repDim c)) k (FD.obj (Discrete.mk c)).V
/-- A map from `C` to `C`. An involution. -/
τ : C → C
/-- The condition that `τ` is an involution. -/
τ_involution : Function.Involutive τ
/-- The natural transformation describing contraction. -/
contr : OverColor.Discrete.pairτ FD τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G)
/-- Contraction is symmetric with respect to duals. -/
contr_tmul_symm (c : C) (x : FD.obj (Discrete.mk c))
(y : FD.obj (Discrete.mk (τ c))) :
(contr.app (Discrete.mk c)).hom (x ⊗ₜ[k] y) = (contr.app (Discrete.mk (τ c))).hom
(y ⊗ₜ (FD.map (Discrete.eqToHom (τ_involution c).symm)).hom x)
/-- The natural transformation describing the unit. -/
unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FD τ
/-- The unit is symmetric. -/
unit_symm (c : C) :
((unit.app (Discrete.mk c)).hom (1 : k)) =
((FD.obj (Discrete.mk (τ (c)))) ◁
(FD.map (Discrete.eqToHom (τ_involution c)))).hom
((β_ (FD.obj (Discrete.mk (τ (τ c)))) (FD.obj (Discrete.mk (τ (c))))).hom.hom
((unit.app (Discrete.mk (τ c))).hom (1 : k)))
/-- Contraction with unit leaves invariant. -/
contr_unit (c : C) (x : FD.obj (Discrete.mk (c))) :
(λ_ (FD.obj (Discrete.mk (c)))).hom.hom
(((contr.app (Discrete.mk c)) ▷ (FD.obj (Discrete.mk (c)))).hom
((α_ _ _ (FD.obj (Discrete.mk (c)))).inv.hom
(x ⊗ₜ[k] (unit.app (Discrete.mk c)).hom (1 : k)))) = x
/-- The natural transformation describing the metric. -/
metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FD
/-- On contracting metrics we get back the unit. -/
contr_metric (c : C) :
(β_ (FD.obj (Discrete.mk c)) (FD.obj (Discrete.mk (τ c)))).hom.hom
(((FD.obj (Discrete.mk c)) ◁ (λ_ (FD.obj (Discrete.mk (τ c)))).hom).hom
(((FD.obj (Discrete.mk c)) ◁ ((contr.app (Discrete.mk c)) ▷
(FD.obj (Discrete.mk (τ c))))).hom
(((FD.obj (Discrete.mk c)) ◁ (α_ (FD.obj (Discrete.mk (c)))
(FD.obj (Discrete.mk (τ c))) (FD.obj (Discrete.mk (τ c)))).inv).hom
((α_ (FD.obj (Discrete.mk (c))) (FD.obj (Discrete.mk (c)))
(FD.obj (Discrete.mk (τ c)) ⊗ FD.obj (Discrete.mk (τ c)))).hom.hom
((metric.app (Discrete.mk c)).hom (1 : k) ⊗ₜ[k]
(metric.app (Discrete.mk (τ c))).hom (1 : k))))))
= (unit.app (Discrete.mk c)).hom (1 : k)
noncomputable section
namespace TensorSpecies
open OverColor
variable (S : TensorSpecies)
/-- The field `k` of a TensorSpecies has the instance of a commuative ring. -/
instance : CommRing S.k := S.k_commRing
/-- The field `G` of a TensorSpecies has the instance of a group. -/
instance : Group S.G := S.G_group
/-- The field `repDim` of a TensorSpecies is non-zero for all colors. -/
instance (c : S.C) : NeZero (S.repDim c) := S.repDim_neZero c
/-- The lift of the functor `S.F` to a monoidal functor. -/
def F : BraidedFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FD
/- The definition of `F` as a lemma. -/
lemma F_def : F S = (OverColor.lift).obj S.FD := rfl
lemma perm_contr_cond {n : } {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ}
(h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
c (Fin.succAbove ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)) =
S.τ (c ((Hom.toEquiv σ).symm i)) := by
have h1 := Hom.toEquiv_comp_apply σ
simp only [Nat.succ_eq_add_one, Functor.const_obj_obj, mk_hom] at h1
rw [h1, h1]
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Equiv.apply_symm_apply]
rw [← h]
congr
simp only [Nat.succ_eq_add_one, HepLean.Fin.finExtractOnePerm, HepLean.Fin.finExtractOnPermHom,
HepLean.Fin.finExtractOne_symm_inr_apply, Equiv.symm_apply_apply, Equiv.coe_fn_symm_mk]
erw [Equiv.apply_symm_apply]
rw [HepLean.Fin.succsAbove_predAboveI]
erw [Equiv.apply_symm_apply]
simp only [Nat.succ_eq_add_one, ne_eq]
erw [Equiv.apply_eq_iff_eq]
exact (Fin.succAbove_ne i j).symm
/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo`
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FD`. -/
def contrFin1Fin1 {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅
(OverColor.Discrete.pairτ S.FD S.τ).obj { as := c i } := by
apply (S.F.mapIso
(OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans
apply (S.F.μIso _ _).symm.trans
apply tensorIso ?_ ?_
· symm
apply (OverColor.forgetLiftApp S.FD (c i)).symm.trans
apply S.F.mapIso
apply OverColor.mkIso
funext x
fin_cases x
rfl
· symm
apply (OverColor.forgetLiftApp S.FD (S.τ (c i))).symm.trans
apply S.F.mapIso
apply OverColor.mkIso
funext x
fin_cases x
simp [h]
lemma contrFin1Fin1_inv_tmul {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
(x : S.FD.obj { as := c i })
(y : S.FD.obj { as := S.τ (c i) }) :
(S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) =
PiTensorProduct.tprod S.k (fun k =>
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FD.map
(eqToHom (by simp [h]))).hom y) := by
simp only [Nat.succ_eq_add_one, contrFin1Fin1, Functor.comp_obj, Discrete.functor_obj_eq_as,
Function.comp_apply, Iso.trans_symm, Iso.symm_symm_eq, Iso.trans_inv, tensorIso_inv,
Iso.symm_inv, Functor.mapIso_hom, tensor_comp, MonoidalFunctor.μIso_hom, Category.assoc,
LaxMonoidalFunctor.μ_natural, Functor.mapIso_inv, Action.comp_hom,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Functor.id_obj, mk_hom,
Fin.isValue]
change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
((S.F.μ (OverColor.mk fun _ => c i) (OverColor.mk fun _ => S.τ (c i))).hom
((((OverColor.forgetLiftApp S.FD (c i)).inv.hom x) ⊗ₜ[S.k]
((OverColor.forgetLiftApp S.FD (S.τ (c i))).inv.hom y))))) = _
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
forgetLiftApp, Action.mkIso_inv_hom, LinearEquiv.toModuleIso_inv, Fin.isValue]
erw [OverColor.forgetLiftAppV_symm_apply,
OverColor.forgetLiftAppV_symm_apply S.FD (S.τ (c i))]
change ((OverColor.lift.obj S.FD).map (OverColor.mkSum
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
(((OverColor.lift.obj S.FD).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
(((OverColor.lift.obj S.FD).μ (OverColor.mk fun _ => c i)
(OverColor.mk fun _ => S.τ (c i))).hom
(((PiTensorProduct.tprod S.k) fun _ => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun _ => y))) = _
rw [OverColor.lift.obj_μ_tprod_tmul S.FD]
change ((OverColor.lift.obj S.FD).map
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
(((OverColor.lift.obj S.FD).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
((PiTensorProduct.tprod S.k) _)) = _
rw [OverColor.lift.map_tprod S.FD]
change ((OverColor.lift.obj S.FD).map
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
((PiTensorProduct.tprod S.k _)) = _
rw [OverColor.lift.map_tprod S.FD]
apply congrArg
funext r
match r with
| Sum.inl 0 =>
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, lift.discreteSumEquiv, Sum.elim_inl,
Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor]
simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
rfl
| Sum.inr 0 =>
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
instMonoidalCategoryStruct_tensorObj_hom, lift.discreteFunctorMapEqIso, eqToIso_refl,
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.mapIso_hom,
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, lift.discreteSumEquiv,
Sum.elim_inl, Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor,
LinearEquiv.ofLinear_apply]
rfl
lemma contrFin1Fin1_hom_hom_tprod {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
(x : (k : Fin 1 ⊕ Fin 1) → (S.FD.obj
{ as := (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).hom k })) :
(S.contrFin1Fin1 c i j h).hom.hom (PiTensorProduct.tprod S.k x) =
x (Sum.inl 0) ⊗ₜ[S.k] ((S.FD.map (eqToHom (by simp [h]))).hom (x (Sum.inr 0))) := by
change ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).hom _ = _
trans ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).toLinearEquiv
(PiTensorProduct.tprod S.k x)
· rfl
erw [← LinearEquiv.eq_symm_apply]
erw [contrFin1Fin1_inv_tmul]
congr
funext i
match i with
| Sum.inl 0 =>
rfl
| Sum.inr 0 =>
simp only [Nat.succ_eq_add_one, Fin.isValue, mk_hom, Function.comp_apply,
Discrete.functor_obj_eq_as]
change _ = ((S.FD.map (eqToHom _)) ≫ (S.FD.map (eqToHom _))).hom (x (Sum.inr 0))
rw [← Functor.map_comp]
simp
exact h
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and
a `j` in `Fin n.succ` allowing us to undertake contraction. -/
def contrIso {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FD S.τ).obj
(Discrete.mk (c i))) ⊗
(OverColor.lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <|
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <|
(S.F.μIso _ _).symm.trans <| by
refine tensorIso (S.contrFin1Fin1 c i j h) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
lemma contrIso_hom_hom {n : } {c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} :
(S.contrIso c1 i j h).hom.hom =
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗
(S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) := by
rfl
/-- `contrMap` is a function that takes a natural number `n`, a function `c` from
`Fin n.succ.succ` to `S.C`, an index `i` of type `Fin n.succ.succ`, an index `j` of type
`Fin n.succ`, and a proof `h` that `c (i.succAbove j) = S.τ (c i)`. It returns a morphism
corresponding to the contraction of the `i`th index with the `i.succAbove j` index.
--/
def contrMap {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
S.F.obj (OverColor.mk c) ⟶
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
(S.contrIso c i j h).hom ≫
(tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫
(MonoidalCategory.leftUnitor _).hom
/-- Casts an element of the monoidal unit of `Rep S.k S.G` to the field `S.k`. -/
def castToField (v : (↑((𝟙_ (Discrete S.C ⥤ Rep S.k S.G)).obj { as := c }).V)) : S.k := v
/-- Casts an element of `(S.F.obj (OverColor.mk c)).V` for `c` a map from `Fin 0` to an
element of the field. -/
def castFin0ToField {c : Fin 0 → S.C} : (S.F.obj (OverColor.mk c)).V →ₗ[S.k] S.k :=
(PiTensorProduct.isEmptyEquiv (Fin 0)).toLinearMap
lemma castFin0ToField_tprod {c : Fin 0 → S.C}
(x : (i : Fin 0) → S.FD.obj (Discrete.mk (c i))) :
castFin0ToField S (PiTensorProduct.tprod S.k x) = 1 := by
simp only [castFin0ToField, mk_hom, Functor.id_obj, LinearEquiv.coe_coe]
erw [PiTensorProduct.isEmptyEquiv_apply_tprod]
lemma contrMap_tprod {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
(x : (i : Fin n.succ.succ) → S.FD.obj (Discrete.mk (c i))) :
(S.contrMap c i j h).hom (PiTensorProduct.tprod S.k x) =
(S.castToField ((S.contr.app (Discrete.mk (c i))).hom ((x i) ⊗ₜ[S.k]
(S.FD.map (Discrete.eqToHom h)).hom (x (i.succAbove j)))) : S.k)
• (PiTensorProduct.tprod S.k (fun k => x (i.succAbove (j.succAbove k))) :
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))) := by
rw [contrMap, contrIso]
simp only [Nat.succ_eq_add_one, S.F_def, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom,
tensorIso_hom, Monoidal.tensorUnit_obj, tensorHom_id,
Category.assoc, Action.comp_hom, Action.instMonoidalCategory_tensorObj_V,
Action.instMonoidalCategory_tensorHom_hom, Action.instMonoidalCategory_tensorUnit_V,
Action.instMonoidalCategory_whiskerRight_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
Function.comp_apply, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as]
change (λ_ ((lift.obj S.FD).obj _)).hom.hom
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
(((lift.obj S.FD).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)
∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
(((lift.obj S.FD).map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom
((PiTensorProduct.tprod S.k) x)))))) = _
rw [lift.map_tprod]
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
(((S.contr.app { as := c i }).hom ▷
((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
(((lift.obj S.FD).μIso (OverColor.mk
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
((PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FD _)
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm i_1))))))) = _
rw [lift.map_tprod]
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
(((lift.obj S.FD).μIso
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
((PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FD _)
((lift.discreteFunctorMapEqIso S.FD _)
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm i_1)))))))) = _
rw [lift.μIso_inv_tprod]
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
((TensorProduct.map (S.contrFin1Fin1 c i j h).hom.hom
((lift.obj S.FD).map (mkIso _).hom).hom)
(((PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FD _)
((lift.discreteFunctorMapEqIso S.FD _) (x
((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm
(Sum.inl i_1)))))) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FD _) ((lift.discreteFunctorMapEqIso S.FD _)
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
((Hom.toEquiv
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inr i_1)))))))) = _
rw [TensorProduct.map_tmul]
rw [contrFin1Fin1_hom_hom_tprod]
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
Action.instMonoidalCategory_tensorUnit_V, Fin.isValue, mk_hom, Function.comp_apply,
Discrete.functor_obj_eq_as, instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv,
Equiv.refl_symm, Functor.id_obj, ModuleCat.MonoidalCategory.whiskerRight_apply]
rw [Action.instMonoidalCategory_leftUnitor_hom_hom]
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue,
ModuleCat.MonoidalCategory.leftUnitor_hom_apply]
congr 1
/- The contraction. -/
· simp only [Fin.isValue, castToField]
congr 2
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
rfl
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
change (S.FD.map (eqToHom _)).hom
(x (((HepLean.Fin.finExtractTwo i j)).symm ((Sum.inl (Sum.inr 0))))) = _
simp only [Nat.succ_eq_add_one, Fin.isValue]
have h1' {a b d: Fin n.succ.succ} (hbd : b =d) (h : c d = S.τ (c a)) (h' : c b = S.τ (c a)) :
(S.FD.map (Discrete.eqToHom (h))).hom (x d) =
(S.FD.map (Discrete.eqToHom h')).hom (x b) := by
subst hbd
rfl
refine h1' ?_ ?_ ?_
simp only [Nat.succ_eq_add_one, Fin.isValue, HepLean.Fin.finExtractTwo_symm_inl_inr_apply]
simp [h]
/- The tensor. -/
· erw [lift.map_tprod]
apply congrArg
funext d
simp only [mk_hom, Function.comp_apply, lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom,
Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
change (S.FD.map (eqToHom _)).hom
((x ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr (d))))) = _
simp only [Nat.succ_eq_add_one]
have h1 : ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr d))
= (i.succAbove (j.succAbove d)) := HepLean.Fin.finExtractTwo_symm_inr_apply i j d
have h1' {a b : Fin n.succ.succ} (h : a = b) :
(S.FD.map (eqToHom (by rw [h]))).hom (x a) = x b := by
subst h
simp
exact h1' h1
/-!
## Evalutation of indices.
-/
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ`
allowing us to undertake evaluation. -/
def evalIso {n : } (c : Fin n.succ → S.C)
(i : Fin n.succ) : S.F.obj (OverColor.mk c) ≅ (S.FD.obj (Discrete.mk (c i))) ⊗
(OverColor.lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove)) :=
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractOne i))).trans <|
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractOne i).symm))).trans <|
(S.F.μIso _ _).symm.trans <|
tensorIso
((S.F.mapIso (OverColor.mkIso (by ext x; fin_cases x; rfl))).trans
(OverColor.forgetLiftApp S.FD (c i))) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
lemma evalIso_tprod {n : } {c : Fin n.succ → S.C} (i : Fin n.succ)
(x : (i : Fin n.succ) → S.FD.obj (Discrete.mk (c i))) :
(S.evalIso c i).hom.hom (PiTensorProduct.tprod S.k x) =
x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k (fun k => x (i.succAbove k))) := by
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, F_def, evalIso,
Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom,
Action.instMonoidalCategory_tensorHom_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
Function.comp_apply]
change (((lift.obj S.FD).map (mkIso _).hom).hom ≫
(forgetLiftApp S.FD (c i)).hom.hom ⊗
((lift.obj S.FD).map (mkIso _).hom).hom)
(((lift.obj S.FD).μIso
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
(((lift.obj S.FD).map (equivToIso (HepLean.Fin.finExtractOne i)).hom).hom
((PiTensorProduct.tprod S.k) _)))) =_
rw [lift.map_tprod]
change (((lift.obj S.FD).map (mkIso _).hom).hom ≫
(forgetLiftApp S.FD (c i)).hom.hom ⊗
((lift.obj S.FD).map (mkIso _).hom).hom)
(((lift.obj S.FD).μIso
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
(((PiTensorProduct.tprod S.k) _)))) =_
rw [lift.map_tprod]
change ((TensorProduct.map (((lift.obj S.FD).map (mkIso _).hom).hom ≫
(forgetLiftApp S.FD (c i)).hom.hom)
((lift.obj S.FD).map (mkIso _).hom).hom))
(((lift.obj S.FD).μIso
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
((((PiTensorProduct.tprod S.k) _)))) =_
rw [lift.μIso_inv_tprod]
rw [TensorProduct.map_tmul]
erw [lift.map_tprod]
simp only [Nat.succ_eq_add_one, CategoryStruct.comp, Functor.id_obj,
instMonoidalCategoryStruct_tensorObj_hom, mk_hom, Sum.elim_inl, Function.comp_apply,
instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv, Equiv.refl_symm,
LinearMap.coe_comp, Sum.elim_inr]
congr 1
· change (forgetLiftApp S.FD (c i)).hom.hom
(((lift.obj S.FD).map (mkIso _).hom).hom
((PiTensorProduct.tprod S.k) _)) = _
rw [lift.map_tprod]
rw [forgetLiftApp_hom_hom_apply_eq]
apply congrArg
funext i
match i with
| (0 : Fin 1) =>
simp only [mk_hom, Fin.isValue, Function.comp_apply, lift.discreteFunctorMapEqIso,
eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
LinearEquiv.ofLinear_apply]
rfl
· apply congrArg
funext k
simp only [lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv,
eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
LinearEquiv.ofLinear_apply]
change (S.FD.map (eqToHom _)).hom
(x ((HepLean.Fin.finExtractOne i).symm ((Sum.inr k)))) = _
have h1' {a b : Fin n.succ} (h : a = b) :
(S.FD.map (eqToHom (by rw [h]))).hom (x a) = x b := by
subst h
simp
refine h1' ?_
exact HepLean.Fin.finExtractOne_symm_inr_apply i k
/-- The linear map giving the coordinate of a vector with respect to the given basis.
Important Note: This is not a morphism in the category of representations. In general,
it cannot be lifted thereto. -/
def evalLinearMap {n : } {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) :
S.FD.obj { as := c i } →ₗ[S.k] S.k where
toFun := fun v => (S.basis (c i)).repr v e
map_add' := by simp
map_smul' := by simp
/-- The evaluation map, used to evaluate indices of tensors.
Important Note: The evaluation map is in general, not equivariant with respect to
group actions. It is a morphism in the underlying module category, not the category
of representations. -/
def evalMap {n : } {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) :
(S.F.obj (OverColor.mk c)).V ⟶ (S.F.obj (OverColor.mk (c ∘ i.succAbove))).V :=
(S.evalIso c i).hom.hom ≫ ((Action.forgetMonoidal _ _).μIso _ _).inv
≫ ModuleCat.asHom (TensorProduct.map (S.evalLinearMap i e) LinearMap.id) ≫
ModuleCat.asHom (TensorProduct.lid S.k _).toLinearMap
lemma evalMap_tprod {n : } {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i)))
(x : (i : Fin n.succ) → S.FD.obj (Discrete.mk (c i))) :
(S.evalMap i e) (PiTensorProduct.tprod S.k x) =
(((S.basis (c i)).repr (x i) e) : S.k) •
(PiTensorProduct.tprod S.k
(fun k => x (i.succAbove k)) : S.F.obj (OverColor.mk (c ∘ i.succAbove))) := by
rw [evalMap]
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor, Action.forget_obj, Functor.id_obj, mk_hom,
Function.comp_apply, ModuleCat.coe_comp]
erw [evalIso_tprod]
change ((TensorProduct.lid S.k ↑((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove))).V))
(((TensorProduct.map (S.evalLinearMap i e) LinearMap.id))
(((Action.forgetMonoidal (ModuleCat S.k) (MonCat.of S.G)).μIso (S.FD.obj { as := c i })
((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove)))).inv
(x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun k => x (i.succAbove k)))) = _
simp only [Nat.succ_eq_add_one, Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor,
Action.forget_obj, Action.instMonoidalCategory_tensorObj_V, MonoidalFunctor.μIso,
Action.forgetMonoidal_toLaxMonoidalFunctor_μ, asIso_inv, IsIso.inv_id, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
Functor.id_obj, mk_hom, Function.comp_apply, ModuleCat.id_apply, TensorProduct.map_tmul,
LinearMap.id_coe, id_eq, TensorProduct.lid_tmul]
rfl
end TensorSpecies
end

View file

@ -0,0 +1,45 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.TensorSpecies.Basic
/-!
# Isomorphism between rep of color `c` and rep of dual color.
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
noncomputable section
namespace TensorSpecies
variable (S : TensorSpecies)
/-- The morphism from `S.FD.obj (Discrete.mk c)` to `S.FD.obj (Discrete.mk (S.τ c))`
defined by contracting with the metric. -/
def toDualRep (c : S.C) : S.FD.obj (Discrete.mk c) ⟶ S.FD.obj (Discrete.mk (S.τ c)) :=
(ρ_ (S.FD.obj (Discrete.mk c))).inv
≫ (S.FD.obj { as := c } ◁ (S.metric.app (Discrete.mk (S.τ c))))
≫ (α_ (S.FD.obj (Discrete.mk c)) (S.FD.obj (Discrete.mk (S.τ c)))
(S.FD.obj (Discrete.mk (S.τ c)))).inv
≫ (S.contr.app (Discrete.mk c) ▷ S.FD.obj { as := S.τ c })
≫ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom
/-- The `toDualRep` for equal colors is the same, up-to conjugation by a trivial equivalence. -/
lemma toDualRep_congr {c c' : S.C} (h : c = c') : S.toDualRep c = S.FD.map (Discrete.eqToHom h) ≫
S.toDualRep c' ≫ S.FD.map (Discrete.eqToHom (congrArg S.τ h.symm)) := by
subst h
simp only [eqToHom_refl, Discrete.functor_map_id, Category.comp_id, Category.id_comp]
/-- The morphism from `S.FD.obj (Discrete.mk (S.τ c))` to `S.FD.obj (Discrete.mk c)`
defined by contracting with the metric. -/
def fromDualRep (c : S.C) : S.FD.obj (Discrete.mk (S.τ c)) ⟶ S.FD.obj (Discrete.mk c) :=
S.toDualRep (S.τ c) ≫ S.FD.map (Discrete.eqToHom (S.τ_involution c))
end TensorSpecies
end

View file

@ -3,23 +3,10 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.OverColor.Iso
import HepLean.Tensors.OverColor.Discrete
import HepLean.Tensors.OverColor.Lift
import Mathlib.CategoryTheory.Monoidal.NaturalTransformation
import HepLean.Tensors.TensorSpecies.Basic
/-!
# Tensor species and trees
## Tensor species
- A tensor species is a structure including all of the ingredients needed to define a type of
tensor.
- Examples of tensor species will include real Lorentz tensors, complex Lorentz tensors, and
Einstien tensors.
- Tensor species are built upon symmetric monoidal categories.
## Trees
# Tensor trees
- Tensor trees provide an abstract way to represent tensor expressions.
- Their nodes are either tensors or operations between tensors.
@ -37,523 +24,8 @@ open IndexNotation
open CategoryTheory
open MonoidalCategory
/-- The structure of a type of tensors e.g. Lorentz tensors, ordinary tensors
(vectors and matrices), complex Lorentz tensors. -/
structure TensorSpecies where
/-- The commutative ring over which we want to consider the tensors to live in,
usually `` or ``. -/
k : Type
/-- An instance of `k` as a commutative ring. -/
k_commRing : CommRing k
/-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,). -/
G : Type
/-- An instance of `G` as a group. -/
G_group : Group G
/-- The colors of indices e.g. up or down. -/
C : Type
/-- A functor from `C` to `Rep k G` giving our building block representations.
Equivalently a function `C → Re k G`. -/
FD : Discrete C ⥤ Rep k G
/-- A specification of the dimension of each color in C. This will be used for explicit
evaluation of tensors. -/
repDim : C →
/-- repDim is not zero for any color. This allows casting of `` to `Fin (S.repDim c)`. -/
repDim_neZero (c : C) : NeZero (repDim c)
/-- A basis for each Module, determined by the evaluation map. -/
basis : (c : C) → Basis (Fin (repDim c)) k (FD.obj (Discrete.mk c)).V
/-- A map from `C` to `C`. An involution. -/
τ : C → C
/-- The condition that `τ` is an involution. -/
τ_involution : Function.Involutive τ
/-- The natural transformation describing contraction. -/
contr : OverColor.Discrete.pairτ FD τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G)
/-- Contraction is symmetric with respect to duals. -/
contr_tmul_symm (c : C) (x : FD.obj (Discrete.mk c))
(y : FD.obj (Discrete.mk (τ c))) :
(contr.app (Discrete.mk c)).hom (x ⊗ₜ[k] y) = (contr.app (Discrete.mk (τ c))).hom
(y ⊗ₜ (FD.map (Discrete.eqToHom (τ_involution c).symm)).hom x)
/-- The natural transformation describing the unit. -/
unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FD τ
/-- The unit is symmetric. -/
unit_symm (c : C) :
((unit.app (Discrete.mk c)).hom (1 : k)) =
((FD.obj (Discrete.mk (τ (c)))) ◁
(FD.map (Discrete.eqToHom (τ_involution c)))).hom
((β_ (FD.obj (Discrete.mk (τ (τ c)))) (FD.obj (Discrete.mk (τ (c))))).hom.hom
((unit.app (Discrete.mk (τ c))).hom (1 : k)))
/-- Contraction with unit leaves invariant. -/
contr_unit (c : C) (x : FD.obj (Discrete.mk (c))) :
(λ_ (FD.obj (Discrete.mk (c)))).hom.hom
(((contr.app (Discrete.mk c)) ▷ (FD.obj (Discrete.mk (c)))).hom
((α_ _ _ (FD.obj (Discrete.mk (c)))).inv.hom
(x ⊗ₜ[k] (unit.app (Discrete.mk c)).hom (1 : k)))) = x
/-- The natural transformation describing the metric. -/
metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FD
/-- On contracting metrics we get back the unit. -/
contr_metric (c : C) :
(β_ (FD.obj (Discrete.mk c)) (FD.obj (Discrete.mk (τ c)))).hom.hom
(((FD.obj (Discrete.mk c)) ◁ (λ_ (FD.obj (Discrete.mk (τ c)))).hom).hom
(((FD.obj (Discrete.mk c)) ◁ ((contr.app (Discrete.mk c)) ▷
(FD.obj (Discrete.mk (τ c))))).hom
(((FD.obj (Discrete.mk c)) ◁ (α_ (FD.obj (Discrete.mk (c)))
(FD.obj (Discrete.mk (τ c))) (FD.obj (Discrete.mk (τ c)))).inv).hom
((α_ (FD.obj (Discrete.mk (c))) (FD.obj (Discrete.mk (c)))
(FD.obj (Discrete.mk (τ c)) ⊗ FD.obj (Discrete.mk (τ c)))).hom.hom
((metric.app (Discrete.mk c)).hom (1 : k) ⊗ₜ[k]
(metric.app (Discrete.mk (τ c))).hom (1 : k))))))
= (unit.app (Discrete.mk c)).hom (1 : k)
noncomputable section
namespace TensorSpecies
open OverColor
variable (S : TensorSpecies)
/-- The field `k` of a TensorSpecies has the instance of a commuative ring. -/
instance : CommRing S.k := S.k_commRing
/-- The field `G` of a TensorSpecies has the instance of a group. -/
instance : Group S.G := S.G_group
/-- The field `repDim` of a TensorSpecies is non-zero for all colors. -/
instance (c : S.C) : NeZero (S.repDim c) := S.repDim_neZero c
/-- The lift of the functor `S.F` to a monoidal functor. -/
def F : BraidedFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FD
/- The definition of `F` as a lemma. -/
lemma F_def : F S = (OverColor.lift).obj S.FD := rfl
lemma perm_contr_cond {n : } {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ}
(h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
c (Fin.succAbove ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)) =
S.τ (c ((Hom.toEquiv σ).symm i)) := by
have h1 := Hom.toEquiv_comp_apply σ
simp only [Nat.succ_eq_add_one, Functor.const_obj_obj, mk_hom] at h1
rw [h1, h1]
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Equiv.apply_symm_apply]
rw [← h]
congr
simp only [Nat.succ_eq_add_one, HepLean.Fin.finExtractOnePerm, HepLean.Fin.finExtractOnPermHom,
HepLean.Fin.finExtractOne_symm_inr_apply, Equiv.symm_apply_apply, Equiv.coe_fn_symm_mk]
erw [Equiv.apply_symm_apply]
rw [HepLean.Fin.succsAbove_predAboveI]
erw [Equiv.apply_symm_apply]
simp only [Nat.succ_eq_add_one, ne_eq]
erw [Equiv.apply_eq_iff_eq]
exact (Fin.succAbove_ne i j).symm
/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo`
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FD`. -/
def contrFin1Fin1 {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅
(OverColor.Discrete.pairτ S.FD S.τ).obj { as := c i } := by
apply (S.F.mapIso
(OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans
apply (S.F.μIso _ _).symm.trans
apply tensorIso ?_ ?_
· symm
apply (OverColor.forgetLiftApp S.FD (c i)).symm.trans
apply S.F.mapIso
apply OverColor.mkIso
funext x
fin_cases x
rfl
· symm
apply (OverColor.forgetLiftApp S.FD (S.τ (c i))).symm.trans
apply S.F.mapIso
apply OverColor.mkIso
funext x
fin_cases x
simp [h]
lemma contrFin1Fin1_inv_tmul {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
(x : S.FD.obj { as := c i })
(y : S.FD.obj { as := S.τ (c i) }) :
(S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) =
PiTensorProduct.tprod S.k (fun k =>
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FD.map
(eqToHom (by simp [h]))).hom y) := by
simp only [Nat.succ_eq_add_one, contrFin1Fin1, Functor.comp_obj, Discrete.functor_obj_eq_as,
Function.comp_apply, Iso.trans_symm, Iso.symm_symm_eq, Iso.trans_inv, tensorIso_inv,
Iso.symm_inv, Functor.mapIso_hom, tensor_comp, MonoidalFunctor.μIso_hom, Category.assoc,
LaxMonoidalFunctor.μ_natural, Functor.mapIso_inv, Action.comp_hom,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Functor.id_obj, mk_hom,
Fin.isValue]
change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
((S.F.μ (OverColor.mk fun _ => c i) (OverColor.mk fun _ => S.τ (c i))).hom
((((OverColor.forgetLiftApp S.FD (c i)).inv.hom x) ⊗ₜ[S.k]
((OverColor.forgetLiftApp S.FD (S.τ (c i))).inv.hom y))))) = _
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
forgetLiftApp, Action.mkIso_inv_hom, LinearEquiv.toModuleIso_inv, Fin.isValue]
erw [OverColor.forgetLiftAppV_symm_apply,
OverColor.forgetLiftAppV_symm_apply S.FD (S.τ (c i))]
change ((OverColor.lift.obj S.FD).map (OverColor.mkSum
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
(((OverColor.lift.obj S.FD).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
(((OverColor.lift.obj S.FD).μ (OverColor.mk fun _ => c i)
(OverColor.mk fun _ => S.τ (c i))).hom
(((PiTensorProduct.tprod S.k) fun _ => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun _ => y))) = _
rw [OverColor.lift.obj_μ_tprod_tmul S.FD]
change ((OverColor.lift.obj S.FD).map
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
(((OverColor.lift.obj S.FD).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
((PiTensorProduct.tprod S.k) _)) = _
rw [OverColor.lift.map_tprod S.FD]
change ((OverColor.lift.obj S.FD).map
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
((PiTensorProduct.tprod S.k _)) = _
rw [OverColor.lift.map_tprod S.FD]
apply congrArg
funext r
match r with
| Sum.inl 0 =>
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, lift.discreteSumEquiv, Sum.elim_inl,
Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor]
simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
rfl
| Sum.inr 0 =>
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
instMonoidalCategoryStruct_tensorObj_hom, lift.discreteFunctorMapEqIso, eqToIso_refl,
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.mapIso_hom,
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, lift.discreteSumEquiv,
Sum.elim_inl, Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor,
LinearEquiv.ofLinear_apply]
rfl
lemma contrFin1Fin1_hom_hom_tprod {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
(x : (k : Fin 1 ⊕ Fin 1) → (S.FD.obj
{ as := (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).hom k })) :
(S.contrFin1Fin1 c i j h).hom.hom (PiTensorProduct.tprod S.k x) =
x (Sum.inl 0) ⊗ₜ[S.k] ((S.FD.map (eqToHom (by simp [h]))).hom (x (Sum.inr 0))) := by
change ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).hom _ = _
trans ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).toLinearEquiv
(PiTensorProduct.tprod S.k x)
· rfl
erw [← LinearEquiv.eq_symm_apply]
erw [contrFin1Fin1_inv_tmul]
congr
funext i
match i with
| Sum.inl 0 =>
rfl
| Sum.inr 0 =>
simp only [Nat.succ_eq_add_one, Fin.isValue, mk_hom, Function.comp_apply,
Discrete.functor_obj_eq_as]
change _ = ((S.FD.map (eqToHom _)) ≫ (S.FD.map (eqToHom _))).hom (x (Sum.inr 0))
rw [← Functor.map_comp]
simp
exact h
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and
a `j` in `Fin n.succ` allowing us to undertake contraction. -/
def contrIso {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FD S.τ).obj
(Discrete.mk (c i))) ⊗
(OverColor.lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <|
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <|
(S.F.μIso _ _).symm.trans <| by
refine tensorIso (S.contrFin1Fin1 c i j h) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
lemma contrIso_hom_hom {n : } {c1 : Fin n.succ.succ → S.C}
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} :
(S.contrIso c1 i j h).hom.hom =
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗
(S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) := by
rfl
/-- `contrMap` is a function that takes a natural number `n`, a function `c` from
`Fin n.succ.succ` to `S.C`, an index `i` of type `Fin n.succ.succ`, an index `j` of type
`Fin n.succ`, and a proof `h` that `c (i.succAbove j) = S.τ (c i)`. It returns a morphism
corresponding to the contraction of the `i`th index with the `i.succAbove j` index.
--/
def contrMap {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
S.F.obj (OverColor.mk c) ⟶
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
(S.contrIso c i j h).hom ≫
(tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫
(MonoidalCategory.leftUnitor _).hom
/-- Casts an element of the monoidal unit of `Rep S.k S.G` to the field `S.k`. -/
def castToField (v : (↑((𝟙_ (Discrete S.C ⥤ Rep S.k S.G)).obj { as := c }).V)) : S.k := v
/-- Casts an element of `(S.F.obj (OverColor.mk c)).V` for `c` a map from `Fin 0` to an
element of the field. -/
def castFin0ToField {c : Fin 0 → S.C} : (S.F.obj (OverColor.mk c)).V →ₗ[S.k] S.k :=
(PiTensorProduct.isEmptyEquiv (Fin 0)).toLinearMap
lemma castFin0ToField_tprod {c : Fin 0 → S.C}
(x : (i : Fin 0) → S.FD.obj (Discrete.mk (c i))) :
castFin0ToField S (PiTensorProduct.tprod S.k x) = 1 := by
simp only [castFin0ToField, mk_hom, Functor.id_obj, LinearEquiv.coe_coe]
erw [PiTensorProduct.isEmptyEquiv_apply_tprod]
lemma contrMap_tprod {n : } (c : Fin n.succ.succ → S.C)
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
(x : (i : Fin n.succ.succ) → S.FD.obj (Discrete.mk (c i))) :
(S.contrMap c i j h).hom (PiTensorProduct.tprod S.k x) =
(S.castToField ((S.contr.app (Discrete.mk (c i))).hom ((x i) ⊗ₜ[S.k]
(S.FD.map (Discrete.eqToHom h)).hom (x (i.succAbove j)))) : S.k)
• (PiTensorProduct.tprod S.k (fun k => x (i.succAbove (j.succAbove k))) :
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))) := by
rw [contrMap, contrIso]
simp only [Nat.succ_eq_add_one, S.F_def, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom,
tensorIso_hom, Monoidal.tensorUnit_obj, tensorHom_id,
Category.assoc, Action.comp_hom, Action.instMonoidalCategory_tensorObj_V,
Action.instMonoidalCategory_tensorHom_hom, Action.instMonoidalCategory_tensorUnit_V,
Action.instMonoidalCategory_whiskerRight_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
Function.comp_apply, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as]
change (λ_ ((lift.obj S.FD).obj _)).hom.hom
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
(((lift.obj S.FD).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)
∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
(((lift.obj S.FD).map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom
((PiTensorProduct.tprod S.k) x)))))) = _
rw [lift.map_tprod]
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
(((S.contr.app { as := c i }).hom ▷
((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
(((lift.obj S.FD).μIso (OverColor.mk
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
((PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FD _)
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm i_1))))))) = _
rw [lift.map_tprod]
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
(((lift.obj S.FD).μIso
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
((PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FD _)
((lift.discreteFunctorMapEqIso S.FD _)
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm i_1)))))))) = _
rw [lift.μIso_inv_tprod]
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
((TensorProduct.map (S.contrFin1Fin1 c i j h).hom.hom
((lift.obj S.FD).map (mkIso _).hom).hom)
(((PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FD _)
((lift.discreteFunctorMapEqIso S.FD _) (x
((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm
(Sum.inl i_1)))))) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun i_1 =>
(lift.discreteFunctorMapEqIso S.FD _) ((lift.discreteFunctorMapEqIso S.FD _)
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
((Hom.toEquiv
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inr i_1)))))))) = _
rw [TensorProduct.map_tmul]
rw [contrFin1Fin1_hom_hom_tprod]
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
Action.instMonoidalCategory_tensorUnit_V, Fin.isValue, mk_hom, Function.comp_apply,
Discrete.functor_obj_eq_as, instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv,
Equiv.refl_symm, Functor.id_obj, ModuleCat.MonoidalCategory.whiskerRight_apply]
rw [Action.instMonoidalCategory_leftUnitor_hom_hom]
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue,
ModuleCat.MonoidalCategory.leftUnitor_hom_apply]
congr 1
/- The contraction. -/
· simp only [Fin.isValue, castToField]
congr 2
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
rfl
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
change (S.FD.map (eqToHom _)).hom
(x (((HepLean.Fin.finExtractTwo i j)).symm ((Sum.inl (Sum.inr 0))))) = _
simp only [Nat.succ_eq_add_one, Fin.isValue]
have h1' {a b d: Fin n.succ.succ} (hbd : b =d) (h : c d = S.τ (c a)) (h' : c b = S.τ (c a)) :
(S.FD.map (Discrete.eqToHom (h))).hom (x d) =
(S.FD.map (Discrete.eqToHom h')).hom (x b) := by
subst hbd
rfl
refine h1' ?_ ?_ ?_
simp only [Nat.succ_eq_add_one, Fin.isValue, HepLean.Fin.finExtractTwo_symm_inl_inr_apply]
simp [h]
/- The tensor. -/
· erw [lift.map_tprod]
apply congrArg
funext d
simp only [mk_hom, Function.comp_apply, lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom,
Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
change (S.FD.map (eqToHom _)).hom
((x ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr (d))))) = _
simp only [Nat.succ_eq_add_one]
have h1 : ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr d))
= (i.succAbove (j.succAbove d)) := HepLean.Fin.finExtractTwo_symm_inr_apply i j d
have h1' {a b : Fin n.succ.succ} (h : a = b) :
(S.FD.map (eqToHom (by rw [h]))).hom (x a) = x b := by
subst h
simp
exact h1' h1
/-!
## Evalutation of indices.
-/
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ`
allowing us to undertake evaluation. -/
def evalIso {n : } (c : Fin n.succ → S.C)
(i : Fin n.succ) : S.F.obj (OverColor.mk c) ≅ (S.FD.obj (Discrete.mk (c i))) ⊗
(OverColor.lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove)) :=
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractOne i))).trans <|
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractOne i).symm))).trans <|
(S.F.μIso _ _).symm.trans <|
tensorIso
((S.F.mapIso (OverColor.mkIso (by ext x; fin_cases x; rfl))).trans
(OverColor.forgetLiftApp S.FD (c i))) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
lemma evalIso_tprod {n : } {c : Fin n.succ → S.C} (i : Fin n.succ)
(x : (i : Fin n.succ) → S.FD.obj (Discrete.mk (c i))) :
(S.evalIso c i).hom.hom (PiTensorProduct.tprod S.k x) =
x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k (fun k => x (i.succAbove k))) := by
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, F_def, evalIso,
Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom,
Action.instMonoidalCategory_tensorHom_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
Function.comp_apply]
change (((lift.obj S.FD).map (mkIso _).hom).hom ≫
(forgetLiftApp S.FD (c i)).hom.hom ⊗
((lift.obj S.FD).map (mkIso _).hom).hom)
(((lift.obj S.FD).μIso
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
(((lift.obj S.FD).map (equivToIso (HepLean.Fin.finExtractOne i)).hom).hom
((PiTensorProduct.tprod S.k) _)))) =_
rw [lift.map_tprod]
change (((lift.obj S.FD).map (mkIso _).hom).hom ≫
(forgetLiftApp S.FD (c i)).hom.hom ⊗
((lift.obj S.FD).map (mkIso _).hom).hom)
(((lift.obj S.FD).μIso
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
(((PiTensorProduct.tprod S.k) _)))) =_
rw [lift.map_tprod]
change ((TensorProduct.map (((lift.obj S.FD).map (mkIso _).hom).hom ≫
(forgetLiftApp S.FD (c i)).hom.hom)
((lift.obj S.FD).map (mkIso _).hom).hom))
(((lift.obj S.FD).μIso
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
((((PiTensorProduct.tprod S.k) _)))) =_
rw [lift.μIso_inv_tprod]
rw [TensorProduct.map_tmul]
erw [lift.map_tprod]
simp only [Nat.succ_eq_add_one, CategoryStruct.comp, Functor.id_obj,
instMonoidalCategoryStruct_tensorObj_hom, mk_hom, Sum.elim_inl, Function.comp_apply,
instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv, Equiv.refl_symm,
LinearMap.coe_comp, Sum.elim_inr]
congr 1
· change (forgetLiftApp S.FD (c i)).hom.hom
(((lift.obj S.FD).map (mkIso _).hom).hom
((PiTensorProduct.tprod S.k) _)) = _
rw [lift.map_tprod]
rw [forgetLiftApp_hom_hom_apply_eq]
apply congrArg
funext i
match i with
| (0 : Fin 1) =>
simp only [mk_hom, Fin.isValue, Function.comp_apply, lift.discreteFunctorMapEqIso,
eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
LinearEquiv.ofLinear_apply]
rfl
· apply congrArg
funext k
simp only [lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv,
eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
LinearEquiv.ofLinear_apply]
change (S.FD.map (eqToHom _)).hom
(x ((HepLean.Fin.finExtractOne i).symm ((Sum.inr k)))) = _
have h1' {a b : Fin n.succ} (h : a = b) :
(S.FD.map (eqToHom (by rw [h]))).hom (x a) = x b := by
subst h
simp
refine h1' ?_
exact HepLean.Fin.finExtractOne_symm_inr_apply i k
/-- The linear map giving the coordinate of a vector with respect to the given basis.
Important Note: This is not a morphism in the category of representations. In general,
it cannot be lifted thereto. -/
def evalLinearMap {n : } {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) :
S.FD.obj { as := c i } →ₗ[S.k] S.k where
toFun := fun v => (S.basis (c i)).repr v e
map_add' := by simp
map_smul' := by simp
/-- The evaluation map, used to evaluate indices of tensors.
Important Note: The evaluation map is in general, not equivariant with respect to
group actions. It is a morphism in the underlying module category, not the category
of representations. -/
def evalMap {n : } {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) :
(S.F.obj (OverColor.mk c)).V ⟶ (S.F.obj (OverColor.mk (c ∘ i.succAbove))).V :=
(S.evalIso c i).hom.hom ≫ ((Action.forgetMonoidal _ _).μIso _ _).inv
≫ ModuleCat.asHom (TensorProduct.map (S.evalLinearMap i e) LinearMap.id) ≫
ModuleCat.asHom (TensorProduct.lid S.k _).toLinearMap
lemma evalMap_tprod {n : } {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i)))
(x : (i : Fin n.succ) → S.FD.obj (Discrete.mk (c i))) :
(S.evalMap i e) (PiTensorProduct.tprod S.k x) =
(((S.basis (c i)).repr (x i) e) : S.k) •
(PiTensorProduct.tprod S.k
(fun k => x (i.succAbove k)) : S.F.obj (OverColor.mk (c ∘ i.succAbove))) := by
rw [evalMap]
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor, Action.forget_obj, Functor.id_obj, mk_hom,
Function.comp_apply, ModuleCat.coe_comp]
erw [evalIso_tprod]
change ((TensorProduct.lid S.k ↑((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove))).V))
(((TensorProduct.map (S.evalLinearMap i e) LinearMap.id))
(((Action.forgetMonoidal (ModuleCat S.k) (MonCat.of S.G)).μIso (S.FD.obj { as := c i })
((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove)))).inv
(x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun k => x (i.succAbove k)))) = _
simp only [Nat.succ_eq_add_one, Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor,
Action.forget_obj, Action.instMonoidalCategory_tensorObj_V, MonoidalFunctor.μIso,
Action.forgetMonoidal_toLaxMonoidalFunctor_μ, asIso_inv, IsIso.inv_id, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
Functor.id_obj, mk_hom, Function.comp_apply, ModuleCat.id_apply, TensorProduct.map_tmul,
LinearMap.id_coe, id_eq, TensorProduct.lid_tmul]
rfl
end TensorSpecies
/-- A syntax tree for tensor expressions. -/
inductive TensorTree (S : TensorSpecies) : {n : } → (Fin n → S.C) → Type where
/-- A general tensor node. -/

View file

@ -0,0 +1,272 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Elab
import HepLean.Tensors.Tree.NodeIdentities.Basic
import HepLean.Tensors.Tree.NodeIdentities.Congr
/-!
## Metrics in tensor trees
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open OverColor
open HepLean.Fin
open TensorProduct
noncomputable section
namespace TensorSpecies
/-- The metric of a tensor species in a `PiTensorProduct`. -/
def metricTensor (S : TensorSpecies) (c : S.C) : S.F.obj (OverColor.mk ![c, c]) :=
(OverColor.Discrete.pairIsoSep S.FD).hom.hom ((S.metric.app (Discrete.mk c)).hom (1 : S.k))
/-- The unit of a tensor species in a `PiTensorProduct`. -/
def unitTensor (S : TensorSpecies) (c : S.C) : S.F.obj (OverColor.mk ![S.τ c, c]) :=
(OverColor.Discrete.pairIsoSep S.FD).hom.hom ((S.unit.app (Discrete.mk c)).hom (1 : S.k))
end TensorSpecies
namespace TensorTree
open TensorSpecies
variable {S : TensorSpecies}
lemma unitTensor_congr {c c' : S.C} (h : c = c') : {S.unitTensor c | μ ν}ᵀ.tensor =
(perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by subst h; fin_cases x <;> rfl ))
{S.unitTensor c' | μ ν}ᵀ).tensor := by
subst h
change _ = (S.F.map (𝟙 _)).hom (S.unitTensor c)
simp
lemma unitTensor_eq_dual_perm_eq (c : S.C) : ∀ (x : Fin (Nat.succ 0).succ),
![S.τ c, c] x = (![S.τ (S.τ c), S.τ c] ∘ ⇑(finMapToEquiv ![1, 0] ![1, 0]).symm) x := fun x => by
fin_cases x
· rfl
· exact (S.τ_involution c).symm
/-- The unit tensor is equal to a permutation of indices of the dual tensor. -/
lemma unitTensor_eq_dual_perm (c : S.C) : {S.unitTensor c | μ ν}ᵀ.tensor =
(perm (OverColor.equivToHomEq (finMapToEquiv ![1,0] ![1, 0]) (unitTensor_eq_dual_perm_eq c))
{S.unitTensor (S.τ c) | ν μ }ᵀ).tensor := by
simp [unitTensor, tensorNode_tensor, perm_tensor]
have h1 := S.unit_symm c
erw [h1]
have hg : (Discrete.pairIsoSep S.FD).hom.hom ∘ₗ (S.FD.obj { as := S.τ c } ◁
S.FD.map (Discrete.eqToHom (S.τ_involution c))).hom ∘ₗ
(β_ (S.FD.obj { as := S.τ (S.τ c) }) (S.FD.obj { as := S.τ c })).hom.hom =
(S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) (unitTensor_eq_dual_perm_eq c))).hom
∘ₗ (Discrete.pairIsoSep S.FD).hom.hom := by
apply TensorProduct.ext'
intro x y
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_whiskerLeft_hom,
LinearMap.coe_comp, Function.comp_apply, Fin.isValue]
change (Discrete.pairIsoSep S.FD).hom.hom
(((y ⊗ₜ[S.k] ((S.FD.map (Discrete.eqToHom _)).hom x)))) =
((S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) _)).hom ∘ₗ
(Discrete.pairIsoSep S.FD).hom.hom) (x ⊗ₜ[S.k] y)
rw [Discrete.pairIsoSep_tmul]
conv_rhs =>
simp [Discrete.pairIsoSep_tmul]
change _ =
(S.F.map (equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) _)).hom
((Discrete.pairIsoSep S.FD).hom.hom (x ⊗ₜ[S.k] y))
rw [Discrete.pairIsoSep_tmul]
simp only [F_def, Nat.succ_eq_add_one, Nat.reduceAdd, mk_hom, Functor.id_obj, Fin.isValue]
erw [OverColor.lift.map_tprod]
apply congrArg
funext i
fin_cases i
· simp only [Fin.zero_eta, Fin.isValue, Matrix.cons_val_zero, Fin.cases_zero, mk_hom,
Nat.succ_eq_add_one, Nat.reduceAdd, lift.discreteFunctorMapEqIso, eqToIso_refl,
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
rfl
· simp only [Fin.mk_one, Fin.isValue, Matrix.cons_val_one, Matrix.head_cons, mk_hom,
Nat.succ_eq_add_one, Nat.reduceAdd, lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, LinearEquiv.ofLinear_apply]
rfl
exact congrFun (congrArg (fun f => f.toFun) hg) _
lemma dual_unitTensor_eq_perm_eq (c : S.C) : ∀ (x : Fin (Nat.succ 0).succ),
![S.τ (S.τ c), S.τ c] x = (![S.τ c, c] ∘ ⇑(finMapToEquiv ![1, 0] ![1, 0]).symm) x := fun x => by
fin_cases x
· exact (S.τ_involution c)
· rfl
lemma dual_unitTensor_eq_perm (c : S.C) : {S.unitTensor (S.τ c) | ν μ}ᵀ.tensor =
(perm (OverColor.equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) (dual_unitTensor_eq_perm_eq c))
{S.unitTensor c | μ ν}ᵀ).tensor := by
rw [unitTensor_eq_dual_perm]
conv =>
lhs
rw [perm_tensor_eq <| unitTensor_congr (S.τ_involution c)]
rw [perm_perm]
refine perm_congr ?_ rfl
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue]
rfl
lemma pairIsoSep_inv_metricTensor (c : S.C) :
(Discrete.pairIsoSep S.FD).inv.hom (S.metricTensor c) =
(S.metric.app (Discrete.mk c)).hom (1 : S.k) := by
simp [metricTensor]
erw [Discrete.rep_iso_inv_hom_apply]
lemma contr_metric_braid_unit (c : S.C) : (((S.FD.obj (Discrete.mk c)) ◁
(λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom).hom
(((S.FD.obj (Discrete.mk c)) ◁ ((S.contr.app (Discrete.mk c)) ▷
(S.FD.obj (Discrete.mk (S.τ c))))).hom
(((S.FD.obj (Discrete.mk c)) ◁ (α_ (S.FD.obj (Discrete.mk (c)))
(S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv).hom
((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c)))
(S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom
(((OverColor.Discrete.pairIsoSep S.FD).inv.hom (S.metricTensor c) ⊗ₜ
(OverColor.Discrete.pairIsoSep S.FD).inv.hom (S.metricTensor (S.τ c)))))))) =
(β_ (S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk c))).hom.hom
((S.unit.app (Discrete.mk c)).hom (1 : S.k)) := by
have hx : Function.Injective (β_ (S.FD.obj (Discrete.mk c)) (S.FD.obj (Discrete.mk (S.τ c))) ).hom.hom := by
change Function.Injective (β_ (S.FD.obj (Discrete.mk c)).V (S.FD.obj (Discrete.mk (S.τ c))).V ).hom
exact (β_ (S.FD.obj (Discrete.mk c)).V (S.FD.obj (Discrete.mk (S.τ c))).V ).toLinearEquiv.toEquiv.injective
apply hx
rw [pairIsoSep_inv_metricTensor, pairIsoSep_inv_metricTensor]
rw [S.contr_metric c]
change _ = (β_ (S.FD.obj { as := S.τ c }) (S.FD.obj { as := c })).inv.hom
((β_ (S.FD.obj { as := S.τ c }) (S.FD.obj { as := c })).hom.hom _)
rw [Discrete.rep_iso_inv_hom_apply]
set_option maxHeartbeats 0 in
lemma contr_two_two_inner (c : S.C) (x : S.F.obj (OverColor.mk ![c, c]))
(y : S.F.obj (OverColor.mk ![(S.τ c), (S.τ c)]) ):
{x | μ ν ⊗ y| ν ρ}ᵀ.tensor = (S.F.map (OverColor.mkIso (by
funext x
fin_cases x <;> rfl)).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom
(((S.FD.obj (Discrete.mk c)) ◁ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom).hom
(((S.FD.obj (Discrete.mk c)) ◁ ((S.contr.app (Discrete.mk c)) ▷
(S.FD.obj (Discrete.mk (S.τ c))))).hom
(((S.FD.obj (Discrete.mk c)) ◁ (α_ (S.FD.obj (Discrete.mk (c)))
(S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv).hom
((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c)))
(S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom
(((OverColor.Discrete.pairIsoSep S.FD).inv.hom x ⊗ₜ
(OverColor.Discrete.pairIsoSep S.FD).inv.hom y))))))):= by
simp only [Nat.reduceAdd, Fin.isValue, contr_tensor, prod_tensor, Functor.id_obj, mk_hom,
Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
tensorNode_tensor, Action.instMonoidalCategory_tensorUnit_V,
Action.instMonoidalCategory_whiskerLeft_hom, Action.instMonoidalCategory_leftUnitor_hom_hom,
Monoidal.tensorUnit_obj, Action.instMonoidalCategory_whiskerRight_hom,
Action.instMonoidalCategory_associator_inv_hom, Action.instMonoidalCategory_associator_hom_hom]
refine PiTensorProduct.induction_on' x ?_ (by
intro a b hx hy
simp only [Fin.isValue, Nat.reduceAdd, Functor.id_obj, mk_hom, add_tmul,
map_add, hx, hy])
intro rx fx
refine PiTensorProduct.induction_on' y ?_ (by
intro a b hx hy
simp_all only [Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, mk_hom,
PiTensorProduct.tprodCoeff_eq_smul_tprod, map_smul, map_add, tmul_add]
)
intro ry fy
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, LinearMapClass.map_smul]
apply congrArg
simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul]
apply congrArg
erw [Discrete.pairIsoSep_inv_tprod S.FD fx, Discrete.pairIsoSep_inv_tprod S.FD fy]
change _ = (S.F.map (OverColor.mkIso _).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom
((fx (0 : Fin 2) ⊗ₜ[S.k] (λ_ (S.FD.obj { as := S.τ c }).V).hom
((S.contr.app { as := c }).hom (fx (1 : Fin 2) ⊗ₜ[S.k] fy (0 : Fin 2)) ⊗ₜ[S.k] fy (1 : Fin 2)))))
simp only [F_def, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Monoidal.tensorUnit_obj,
Action.instMonoidalCategory_tensorUnit_V, Functor.comp_obj, Discrete.functor_obj_eq_as,
Function.comp_apply, ModuleCat.MonoidalCategory.leftUnitor_hom_apply, tmul_smul, map_smul]
erw [OverColor.lift.μ_tmul_tprod S.FD]
rw (config := { transparency := .instances }) [OverColor.lift.map_tprod]
rw (config := { transparency := .instances }) [contrMap_tprod]
congr 1
/- The contraction. -/
· congr
· simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Fin.isValue,
Function.comp_apply, Action.FunctorCategoryEquivalence.functor_obj_obj, mk_hom,
equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.id_obj,
instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
rfl
· simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Fin.isValue,
Function.comp_apply, Functor.comp_obj, Discrete.functor_obj_eq_as,
Action.FunctorCategoryEquivalence.functor_obj_obj, Nat.reduceAdd, eqToHom_refl,
Discrete.functor_map_id, Action.id_hom, mk_hom, equivToIso_homToEquiv,
lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Iso.refl_inv,
Functor.id_obj, instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
rfl
/- The tensor. -/
· rw (config := { transparency := .instances }) [Discrete.pairIsoSep_tmul, OverColor.lift.map_tprod]
apply congrArg
funext k
match k with
| (0 : Fin 2) => rfl
| (1 : Fin 2) => rfl
lemma pairIsoSep_β_perm_cond (c1 c2 : S.C) :
∀ (x : Fin (Nat.succ 0).succ), ![c2, c1] x = (![c1, c2] ∘ ⇑(finMapToEquiv ![1, 0] ![1, 0]).symm) x:= by
intro x
fin_cases x
· rfl
· rfl
lemma pairIsoSep_β {c1 c2 : S.C} (x : ↑(S.FD.obj { as := c1 } ⊗ S.FD.obj { as := c2 }).V ) :
(Discrete.pairIsoSep S.FD).hom.hom ((β_ (S.FD.obj (Discrete.mk c1)) _).hom.hom x) =
(S.F.map ((OverColor.equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) (pairIsoSep_β_perm_cond c1 c2)))).hom
((Discrete.pairIsoSep S.FD).hom.hom x) := by
have h1 : (Discrete.pairIsoSep S.FD).hom.hom ∘ₗ (β_ (S.FD.obj (Discrete.mk c1)) (S.FD.obj (Discrete.mk c2))).hom.hom
= (S.F.map ((OverColor.equivToHomEq (finMapToEquiv ![1, 0] ![1, 0]) (pairIsoSep_β_perm_cond c1 c2)))).hom ∘ₗ (Discrete.pairIsoSep S.FD).hom.hom := by
apply TensorProduct.ext'
intro x y
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
Action.instMonoidalCategory_tensorObj_V, LinearMap.coe_comp, Function.comp_apply, Fin.isValue]
change (Discrete.pairIsoSep S.FD).hom.hom (y ⊗ₜ x) = (S.F.map ((OverColor.equivToHomEq (_) (pairIsoSep_β_perm_cond c1 c2)))).hom
((Discrete.pairIsoSep S.FD).hom.hom (x ⊗ₜ y))
rw [Discrete.pairIsoSep_tmul, Discrete.pairIsoSep_tmul]
erw [OverColor.lift.map_tprod]
apply congrArg
funext i
fin_cases i
· simp [lift.discreteFunctorMapEqIso]
rfl
· simp [lift.discreteFunctorMapEqIso]
rfl
exact congrFun (congrArg (fun f => f.toFun) h1) _
lemma metricTensor_contr_dual_metricTensor_perm_cond (c : S.C) :
∀ (x : Fin (Nat.succ 0).succ),
((Sum.elim ![c, c] ![S.τ c, S.τ c] ∘ ⇑finSumFinEquiv.symm) ∘ Fin.succAbove 1 ∘ Fin.succAbove 1) x =
(![S.τ c, c] ∘ ⇑(finMapToEquiv ![1, 0] ![1, 0]).symm) x := by
intro x
fin_cases x
· rfl
· rfl
/-- The contraction of a metric tensor with its dual gives the unit. -/
lemma metricTensor_contr_dual_metricTensor_eq_unit (c : S.C) :
{S.metricTensor c | μ ν ⊗ S.metricTensor (S.τ c) | ν ρ}ᵀ.tensor =
(perm (OverColor.equivToHomEq (finMapToEquiv ![1, 0] ![1, 0])
(metricTensor_contr_dual_metricTensor_perm_cond c)) {S.unitTensor c | μ ρ}ᵀ).tensor := by
rw [contr_two_two_inner, contr_metric_braid_unit, pairIsoSep_β]
change (S.F.map _ ≫ S.F.map _ ).hom _ = _
rw [← S.F.map_comp]
rfl
end TensorTree
end