feat: Def of general metric tensor and unit tensor
This commit is contained in:
parent
81817fc797
commit
bbb4c020e9
6 changed files with 921 additions and 530 deletions
543
HepLean/Tensors/TensorSpecies/Basic.lean
Normal file
543
HepLean/Tensors/TensorSpecies/Basic.lean
Normal file
|
@ -0,0 +1,543 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.OverColor.Iso
|
||||
import HepLean.Tensors.OverColor.Discrete
|
||||
import HepLean.Tensors.OverColor.Lift
|
||||
import Mathlib.CategoryTheory.Monoidal.NaturalTransformation
|
||||
/-!
|
||||
|
||||
# Tensor species
|
||||
|
||||
- A tensor species is a structure including all of the ingredients needed to define a type of
|
||||
tensor.
|
||||
- Examples of tensor species will include real Lorentz tensors, complex Lorentz tensors, and
|
||||
Einstien tensors.
|
||||
- Tensor species are built upon symmetric monoidal categories.
|
||||
|
||||
-/
|
||||
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
/-- The structure of a type of tensors e.g. Lorentz tensors, ordinary tensors
|
||||
(vectors and matrices), complex Lorentz tensors. -/
|
||||
structure TensorSpecies where
|
||||
/-- The commutative ring over which we want to consider the tensors to live in,
|
||||
usually `ℝ` or `ℂ`. -/
|
||||
k : Type
|
||||
/-- An instance of `k` as a commutative ring. -/
|
||||
k_commRing : CommRing k
|
||||
/-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,ℂ). -/
|
||||
G : Type
|
||||
/-- An instance of `G` as a group. -/
|
||||
G_group : Group G
|
||||
/-- The colors of indices e.g. up or down. -/
|
||||
C : Type
|
||||
/-- A functor from `C` to `Rep k G` giving our building block representations.
|
||||
Equivalently a function `C → Re k G`. -/
|
||||
FD : Discrete C ⥤ Rep k G
|
||||
/-- A specification of the dimension of each color in C. This will be used for explicit
|
||||
evaluation of tensors. -/
|
||||
repDim : C → ℕ
|
||||
/-- repDim is not zero for any color. This allows casting of `ℕ` to `Fin (S.repDim c)`. -/
|
||||
repDim_neZero (c : C) : NeZero (repDim c)
|
||||
/-- A basis for each Module, determined by the evaluation map. -/
|
||||
basis : (c : C) → Basis (Fin (repDim c)) k (FD.obj (Discrete.mk c)).V
|
||||
/-- A map from `C` to `C`. An involution. -/
|
||||
τ : C → C
|
||||
/-- The condition that `τ` is an involution. -/
|
||||
τ_involution : Function.Involutive τ
|
||||
/-- The natural transformation describing contraction. -/
|
||||
contr : OverColor.Discrete.pairτ FD τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G)
|
||||
/-- Contraction is symmetric with respect to duals. -/
|
||||
contr_tmul_symm (c : C) (x : FD.obj (Discrete.mk c))
|
||||
(y : FD.obj (Discrete.mk (τ c))) :
|
||||
(contr.app (Discrete.mk c)).hom (x ⊗ₜ[k] y) = (contr.app (Discrete.mk (τ c))).hom
|
||||
(y ⊗ₜ (FD.map (Discrete.eqToHom (τ_involution c).symm)).hom x)
|
||||
/-- The natural transformation describing the unit. -/
|
||||
unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FD τ
|
||||
/-- The unit is symmetric. -/
|
||||
unit_symm (c : C) :
|
||||
((unit.app (Discrete.mk c)).hom (1 : k)) =
|
||||
((FD.obj (Discrete.mk (τ (c)))) ◁
|
||||
(FD.map (Discrete.eqToHom (τ_involution c)))).hom
|
||||
((β_ (FD.obj (Discrete.mk (τ (τ c)))) (FD.obj (Discrete.mk (τ (c))))).hom.hom
|
||||
((unit.app (Discrete.mk (τ c))).hom (1 : k)))
|
||||
/-- Contraction with unit leaves invariant. -/
|
||||
contr_unit (c : C) (x : FD.obj (Discrete.mk (c))) :
|
||||
(λ_ (FD.obj (Discrete.mk (c)))).hom.hom
|
||||
(((contr.app (Discrete.mk c)) ▷ (FD.obj (Discrete.mk (c)))).hom
|
||||
((α_ _ _ (FD.obj (Discrete.mk (c)))).inv.hom
|
||||
(x ⊗ₜ[k] (unit.app (Discrete.mk c)).hom (1 : k)))) = x
|
||||
/-- The natural transformation describing the metric. -/
|
||||
metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FD
|
||||
/-- On contracting metrics we get back the unit. -/
|
||||
contr_metric (c : C) :
|
||||
(β_ (FD.obj (Discrete.mk c)) (FD.obj (Discrete.mk (τ c)))).hom.hom
|
||||
(((FD.obj (Discrete.mk c)) ◁ (λ_ (FD.obj (Discrete.mk (τ c)))).hom).hom
|
||||
(((FD.obj (Discrete.mk c)) ◁ ((contr.app (Discrete.mk c)) ▷
|
||||
(FD.obj (Discrete.mk (τ c))))).hom
|
||||
(((FD.obj (Discrete.mk c)) ◁ (α_ (FD.obj (Discrete.mk (c)))
|
||||
(FD.obj (Discrete.mk (τ c))) (FD.obj (Discrete.mk (τ c)))).inv).hom
|
||||
((α_ (FD.obj (Discrete.mk (c))) (FD.obj (Discrete.mk (c)))
|
||||
(FD.obj (Discrete.mk (τ c)) ⊗ FD.obj (Discrete.mk (τ c)))).hom.hom
|
||||
((metric.app (Discrete.mk c)).hom (1 : k) ⊗ₜ[k]
|
||||
(metric.app (Discrete.mk (τ c))).hom (1 : k))))))
|
||||
= (unit.app (Discrete.mk c)).hom (1 : k)
|
||||
|
||||
noncomputable section
|
||||
|
||||
namespace TensorSpecies
|
||||
open OverColor
|
||||
|
||||
variable (S : TensorSpecies)
|
||||
|
||||
/-- The field `k` of a TensorSpecies has the instance of a commuative ring. -/
|
||||
instance : CommRing S.k := S.k_commRing
|
||||
|
||||
/-- The field `G` of a TensorSpecies has the instance of a group. -/
|
||||
instance : Group S.G := S.G_group
|
||||
|
||||
/-- The field `repDim` of a TensorSpecies is non-zero for all colors. -/
|
||||
instance (c : S.C) : NeZero (S.repDim c) := S.repDim_neZero c
|
||||
|
||||
/-- The lift of the functor `S.F` to a monoidal functor. -/
|
||||
def F : BraidedFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FD
|
||||
|
||||
/- The definition of `F` as a lemma. -/
|
||||
lemma F_def : F S = (OverColor.lift).obj S.FD := rfl
|
||||
|
||||
lemma perm_contr_cond {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ}
|
||||
(h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) :
|
||||
c (Fin.succAbove ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)) =
|
||||
S.τ (c ((Hom.toEquiv σ).symm i)) := by
|
||||
have h1 := Hom.toEquiv_comp_apply σ
|
||||
simp only [Nat.succ_eq_add_one, Functor.const_obj_obj, mk_hom] at h1
|
||||
rw [h1, h1]
|
||||
simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Equiv.apply_symm_apply]
|
||||
rw [← h]
|
||||
congr
|
||||
simp only [Nat.succ_eq_add_one, HepLean.Fin.finExtractOnePerm, HepLean.Fin.finExtractOnPermHom,
|
||||
HepLean.Fin.finExtractOne_symm_inr_apply, Equiv.symm_apply_apply, Equiv.coe_fn_symm_mk]
|
||||
erw [Equiv.apply_symm_apply]
|
||||
rw [HepLean.Fin.succsAbove_predAboveI]
|
||||
erw [Equiv.apply_symm_apply]
|
||||
simp only [Nat.succ_eq_add_one, ne_eq]
|
||||
erw [Equiv.apply_eq_iff_eq]
|
||||
exact (Fin.succAbove_ne i j).symm
|
||||
|
||||
/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo`
|
||||
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FD`. -/
|
||||
def contrFin1Fin1 {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
||||
S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅
|
||||
(OverColor.Discrete.pairτ S.FD S.τ).obj { as := c i } := by
|
||||
apply (S.F.mapIso
|
||||
(OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans
|
||||
apply (S.F.μIso _ _).symm.trans
|
||||
apply tensorIso ?_ ?_
|
||||
· symm
|
||||
apply (OverColor.forgetLiftApp S.FD (c i)).symm.trans
|
||||
apply S.F.mapIso
|
||||
apply OverColor.mkIso
|
||||
funext x
|
||||
fin_cases x
|
||||
rfl
|
||||
· symm
|
||||
apply (OverColor.forgetLiftApp S.FD (S.τ (c i))).symm.trans
|
||||
apply S.F.mapIso
|
||||
apply OverColor.mkIso
|
||||
funext x
|
||||
fin_cases x
|
||||
simp [h]
|
||||
|
||||
lemma contrFin1Fin1_inv_tmul {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : S.FD.obj { as := c i })
|
||||
(y : S.FD.obj { as := S.τ (c i) }) :
|
||||
(S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) =
|
||||
PiTensorProduct.tprod S.k (fun k =>
|
||||
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FD.map
|
||||
(eqToHom (by simp [h]))).hom y) := by
|
||||
simp only [Nat.succ_eq_add_one, contrFin1Fin1, Functor.comp_obj, Discrete.functor_obj_eq_as,
|
||||
Function.comp_apply, Iso.trans_symm, Iso.symm_symm_eq, Iso.trans_inv, tensorIso_inv,
|
||||
Iso.symm_inv, Functor.mapIso_hom, tensor_comp, MonoidalFunctor.μIso_hom, Category.assoc,
|
||||
LaxMonoidalFunctor.μ_natural, Functor.mapIso_inv, Action.comp_hom,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Functor.id_obj, mk_hom,
|
||||
Fin.isValue]
|
||||
change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
((S.F.μ (OverColor.mk fun _ => c i) (OverColor.mk fun _ => S.τ (c i))).hom
|
||||
((((OverColor.forgetLiftApp S.FD (c i)).inv.hom x) ⊗ₜ[S.k]
|
||||
((OverColor.forgetLiftApp S.FD (S.τ (c i))).inv.hom y))))) = _
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
forgetLiftApp, Action.mkIso_inv_hom, LinearEquiv.toModuleIso_inv, Fin.isValue]
|
||||
erw [OverColor.forgetLiftAppV_symm_apply,
|
||||
OverColor.forgetLiftAppV_symm_apply S.FD (S.τ (c i))]
|
||||
change ((OverColor.lift.obj S.FD).map (OverColor.mkSum
|
||||
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
(((OverColor.lift.obj S.FD).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
(((OverColor.lift.obj S.FD).μ (OverColor.mk fun _ => c i)
|
||||
(OverColor.mk fun _ => S.τ (c i))).hom
|
||||
(((PiTensorProduct.tprod S.k) fun _ => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun _ => y))) = _
|
||||
rw [OverColor.lift.obj_μ_tprod_tmul S.FD]
|
||||
change ((OverColor.lift.obj S.FD).map
|
||||
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
(((OverColor.lift.obj S.FD).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom
|
||||
((PiTensorProduct.tprod S.k) _)) = _
|
||||
rw [OverColor.lift.map_tprod S.FD]
|
||||
change ((OverColor.lift.obj S.FD).map
|
||||
(OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom
|
||||
((PiTensorProduct.tprod S.k _)) = _
|
||||
rw [OverColor.lift.map_tprod S.FD]
|
||||
apply congrArg
|
||||
funext r
|
||||
match r with
|
||||
| Sum.inl 0 =>
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
|
||||
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, lift.discreteSumEquiv, Sum.elim_inl,
|
||||
Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor]
|
||||
simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
| Sum.inr 0 =>
|
||||
simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply,
|
||||
instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, lift.discreteFunctorMapEqIso, eqToIso_refl,
|
||||
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.mapIso_hom,
|
||||
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, lift.discreteSumEquiv,
|
||||
Sum.elim_inl, Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
|
||||
lemma contrFin1Fin1_hom_hom_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : (k : Fin 1 ⊕ Fin 1) → (S.FD.obj
|
||||
{ as := (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).hom k })) :
|
||||
(S.contrFin1Fin1 c i j h).hom.hom (PiTensorProduct.tprod S.k x) =
|
||||
x (Sum.inl 0) ⊗ₜ[S.k] ((S.FD.map (eqToHom (by simp [h]))).hom (x (Sum.inr 0))) := by
|
||||
change ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).hom _ = _
|
||||
trans ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).toLinearEquiv
|
||||
(PiTensorProduct.tprod S.k x)
|
||||
· rfl
|
||||
erw [← LinearEquiv.eq_symm_apply]
|
||||
erw [contrFin1Fin1_inv_tmul]
|
||||
congr
|
||||
funext i
|
||||
match i with
|
||||
| Sum.inl 0 =>
|
||||
rfl
|
||||
| Sum.inr 0 =>
|
||||
simp only [Nat.succ_eq_add_one, Fin.isValue, mk_hom, Function.comp_apply,
|
||||
Discrete.functor_obj_eq_as]
|
||||
change _ = ((S.FD.map (eqToHom _)) ≫ (S.FD.map (eqToHom _))).hom (x (Sum.inr 0))
|
||||
rw [← Functor.map_comp]
|
||||
simp
|
||||
exact h
|
||||
|
||||
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and
|
||||
a `j` in `Fin n.succ` allowing us to undertake contraction. -/
|
||||
def contrIso {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
||||
S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FD S.τ).obj
|
||||
(Discrete.mk (c i))) ⊗
|
||||
(OverColor.lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
||||
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <|
|
||||
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <|
|
||||
(S.F.μIso _ _).symm.trans <| by
|
||||
refine tensorIso (S.contrFin1Fin1 c i j h) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
|
||||
|
||||
lemma contrIso_hom_hom {n : ℕ} {c1 : Fin n.succ.succ → S.C}
|
||||
{i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} :
|
||||
(S.contrIso c1 i j h).hom.hom =
|
||||
(S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫
|
||||
(S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫
|
||||
(S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫
|
||||
((S.contrFin1Fin1 c1 i j h).hom.hom ⊗
|
||||
(S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) := by
|
||||
rfl
|
||||
|
||||
/-- `contrMap` is a function that takes a natural number `n`, a function `c` from
|
||||
`Fin n.succ.succ` to `S.C`, an index `i` of type `Fin n.succ.succ`, an index `j` of type
|
||||
`Fin n.succ`, and a proof `h` that `c (i.succAbove j) = S.τ (c i)`. It returns a morphism
|
||||
corresponding to the contraction of the `i`th index with the `i.succAbove j` index.
|
||||
--/
|
||||
def contrMap {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) :
|
||||
S.F.obj (OverColor.mk c) ⟶
|
||||
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) :=
|
||||
(S.contrIso c i j h).hom ≫
|
||||
(tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫
|
||||
(MonoidalCategory.leftUnitor _).hom
|
||||
|
||||
/-- Casts an element of the monoidal unit of `Rep S.k S.G` to the field `S.k`. -/
|
||||
def castToField (v : (↑((𝟙_ (Discrete S.C ⥤ Rep S.k S.G)).obj { as := c }).V)) : S.k := v
|
||||
|
||||
/-- Casts an element of `(S.F.obj (OverColor.mk c)).V` for `c` a map from `Fin 0` to an
|
||||
element of the field. -/
|
||||
def castFin0ToField {c : Fin 0 → S.C} : (S.F.obj (OverColor.mk c)).V →ₗ[S.k] S.k :=
|
||||
(PiTensorProduct.isEmptyEquiv (Fin 0)).toLinearMap
|
||||
|
||||
lemma castFin0ToField_tprod {c : Fin 0 → S.C}
|
||||
(x : (i : Fin 0) → S.FD.obj (Discrete.mk (c i))) :
|
||||
castFin0ToField S (PiTensorProduct.tprod S.k x) = 1 := by
|
||||
simp only [castFin0ToField, mk_hom, Functor.id_obj, LinearEquiv.coe_coe]
|
||||
erw [PiTensorProduct.isEmptyEquiv_apply_tprod]
|
||||
|
||||
lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
(i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i))
|
||||
(x : (i : Fin n.succ.succ) → S.FD.obj (Discrete.mk (c i))) :
|
||||
(S.contrMap c i j h).hom (PiTensorProduct.tprod S.k x) =
|
||||
(S.castToField ((S.contr.app (Discrete.mk (c i))).hom ((x i) ⊗ₜ[S.k]
|
||||
(S.FD.map (Discrete.eqToHom h)).hom (x (i.succAbove j)))) : S.k)
|
||||
• (PiTensorProduct.tprod S.k (fun k => x (i.succAbove (j.succAbove k))) :
|
||||
S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))) := by
|
||||
rw [contrMap, contrIso]
|
||||
simp only [Nat.succ_eq_add_one, S.F_def, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom,
|
||||
tensorIso_hom, Monoidal.tensorUnit_obj, tensorHom_id,
|
||||
Category.assoc, Action.comp_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.instMonoidalCategory_tensorHom_hom, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.instMonoidalCategory_whiskerRight_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
|
||||
Function.comp_apply, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as]
|
||||
change (λ_ ((lift.obj S.FD).obj _)).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
|
||||
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)
|
||||
∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
|
||||
(((lift.obj S.FD).map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom
|
||||
((PiTensorProduct.tprod S.k) x)))))) = _
|
||||
rw [lift.map_tprod]
|
||||
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷
|
||||
((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso (OverColor.mk
|
||||
((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom
|
||||
((PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FD _)
|
||||
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm i_1))))))) = _
|
||||
rw [lift.map_tprod]
|
||||
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
|
||||
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
(((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom
|
||||
((PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FD _)
|
||||
((lift.discreteFunctorMapEqIso S.FD _)
|
||||
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm i_1)))))))) = _
|
||||
rw [lift.μIso_inv_tprod]
|
||||
change (λ_ ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom
|
||||
(((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FD).obj
|
||||
(OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V)
|
||||
((TensorProduct.map (S.contrFin1Fin1 c i j h).hom.hom
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FD _)
|
||||
((lift.discreteFunctorMapEqIso S.FD _) (x
|
||||
((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm
|
||||
(Sum.inl i_1)))))) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun i_1 =>
|
||||
(lift.discreteFunctorMapEqIso S.FD _) ((lift.discreteFunctorMapEqIso S.FD _)
|
||||
(x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm
|
||||
((Hom.toEquiv
|
||||
(mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inr i_1)))))))) = _
|
||||
rw [TensorProduct.map_tmul]
|
||||
rw [contrFin1Fin1_hom_hom_tprod]
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.instMonoidalCategory_tensorUnit_V, Fin.isValue, mk_hom, Function.comp_apply,
|
||||
Discrete.functor_obj_eq_as, instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv,
|
||||
Equiv.refl_symm, Functor.id_obj, ModuleCat.MonoidalCategory.whiskerRight_apply]
|
||||
rw [Action.instMonoidalCategory_leftUnitor_hom_hom]
|
||||
simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue,
|
||||
ModuleCat.MonoidalCategory.leftUnitor_hom_apply]
|
||||
congr 1
|
||||
/- The contraction. -/
|
||||
· simp only [Fin.isValue, castToField]
|
||||
congr 2
|
||||
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
· simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
|
||||
Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
change (S.FD.map (eqToHom _)).hom
|
||||
(x (((HepLean.Fin.finExtractTwo i j)).symm ((Sum.inl (Sum.inr 0))))) = _
|
||||
simp only [Nat.succ_eq_add_one, Fin.isValue]
|
||||
have h1' {a b d: Fin n.succ.succ} (hbd : b =d) (h : c d = S.τ (c a)) (h' : c b = S.τ (c a)) :
|
||||
(S.FD.map (Discrete.eqToHom (h))).hom (x d) =
|
||||
(S.FD.map (Discrete.eqToHom h')).hom (x b) := by
|
||||
subst hbd
|
||||
rfl
|
||||
refine h1' ?_ ?_ ?_
|
||||
simp only [Nat.succ_eq_add_one, Fin.isValue, HepLean.Fin.finExtractTwo_symm_inl_inr_apply]
|
||||
simp [h]
|
||||
/- The tensor. -/
|
||||
· erw [lift.map_tprod]
|
||||
apply congrArg
|
||||
funext d
|
||||
simp only [mk_hom, Function.comp_apply, lift.discreteFunctorMapEqIso, Functor.mapIso_hom,
|
||||
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom,
|
||||
Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
|
||||
change (S.FD.map (eqToHom _)).hom
|
||||
((x ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr (d))))) = _
|
||||
simp only [Nat.succ_eq_add_one]
|
||||
have h1 : ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr d))
|
||||
= (i.succAbove (j.succAbove d)) := HepLean.Fin.finExtractTwo_symm_inr_apply i j d
|
||||
have h1' {a b : Fin n.succ.succ} (h : a = b) :
|
||||
(S.FD.map (eqToHom (by rw [h]))).hom (x a) = x b := by
|
||||
subst h
|
||||
simp
|
||||
exact h1' h1
|
||||
|
||||
/-!
|
||||
|
||||
## Evalutation of indices.
|
||||
|
||||
-/
|
||||
|
||||
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ`
|
||||
allowing us to undertake evaluation. -/
|
||||
def evalIso {n : ℕ} (c : Fin n.succ → S.C)
|
||||
(i : Fin n.succ) : S.F.obj (OverColor.mk c) ≅ (S.FD.obj (Discrete.mk (c i))) ⊗
|
||||
(OverColor.lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove)) :=
|
||||
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractOne i))).trans <|
|
||||
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractOne i).symm))).trans <|
|
||||
(S.F.μIso _ _).symm.trans <|
|
||||
tensorIso
|
||||
((S.F.mapIso (OverColor.mkIso (by ext x; fin_cases x; rfl))).trans
|
||||
(OverColor.forgetLiftApp S.FD (c i))) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
|
||||
|
||||
lemma evalIso_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ)
|
||||
(x : (i : Fin n.succ) → S.FD.obj (Discrete.mk (c i))) :
|
||||
(S.evalIso c i).hom.hom (PiTensorProduct.tprod S.k x) =
|
||||
x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k (fun k => x (i.succAbove k))) := by
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, F_def, evalIso,
|
||||
Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom,
|
||||
Action.instMonoidalCategory_tensorHom_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
|
||||
Function.comp_apply]
|
||||
change (((lift.obj S.FD).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FD (c i)).hom.hom ⊗
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
|
||||
(((lift.obj S.FD).map (equivToIso (HepLean.Fin.finExtractOne i)).hom).hom
|
||||
((PiTensorProduct.tprod S.k) _)))) =_
|
||||
rw [lift.map_tprod]
|
||||
change (((lift.obj S.FD).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FD (c i)).hom.hom ⊗
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom)
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
|
||||
(((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom
|
||||
(((PiTensorProduct.tprod S.k) _)))) =_
|
||||
rw [lift.map_tprod]
|
||||
change ((TensorProduct.map (((lift.obj S.FD).map (mkIso _).hom).hom ≫
|
||||
(forgetLiftApp S.FD (c i)).hom.hom)
|
||||
((lift.obj S.FD).map (mkIso _).hom).hom))
|
||||
(((lift.obj S.FD).μIso
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl))
|
||||
(OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom
|
||||
((((PiTensorProduct.tprod S.k) _)))) =_
|
||||
rw [lift.μIso_inv_tprod]
|
||||
rw [TensorProduct.map_tmul]
|
||||
erw [lift.map_tprod]
|
||||
simp only [Nat.succ_eq_add_one, CategoryStruct.comp, Functor.id_obj,
|
||||
instMonoidalCategoryStruct_tensorObj_hom, mk_hom, Sum.elim_inl, Function.comp_apply,
|
||||
instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv, Equiv.refl_symm,
|
||||
LinearMap.coe_comp, Sum.elim_inr]
|
||||
congr 1
|
||||
· change (forgetLiftApp S.FD (c i)).hom.hom
|
||||
(((lift.obj S.FD).map (mkIso _).hom).hom
|
||||
((PiTensorProduct.tprod S.k) _)) = _
|
||||
rw [lift.map_tprod]
|
||||
rw [forgetLiftApp_hom_hom_apply_eq]
|
||||
apply congrArg
|
||||
funext i
|
||||
match i with
|
||||
| (0 : Fin 1) =>
|
||||
simp only [mk_hom, Fin.isValue, Function.comp_apply, lift.discreteFunctorMapEqIso,
|
||||
eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
rfl
|
||||
· apply congrArg
|
||||
funext k
|
||||
simp only [lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv,
|
||||
eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
change (S.FD.map (eqToHom _)).hom
|
||||
(x ((HepLean.Fin.finExtractOne i).symm ((Sum.inr k)))) = _
|
||||
have h1' {a b : Fin n.succ} (h : a = b) :
|
||||
(S.FD.map (eqToHom (by rw [h]))).hom (x a) = x b := by
|
||||
subst h
|
||||
simp
|
||||
refine h1' ?_
|
||||
exact HepLean.Fin.finExtractOne_symm_inr_apply i k
|
||||
|
||||
/-- The linear map giving the coordinate of a vector with respect to the given basis.
|
||||
Important Note: This is not a morphism in the category of representations. In general,
|
||||
it cannot be lifted thereto. -/
|
||||
def evalLinearMap {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) :
|
||||
S.FD.obj { as := c i } →ₗ[S.k] S.k where
|
||||
toFun := fun v => (S.basis (c i)).repr v e
|
||||
map_add' := by simp
|
||||
map_smul' := by simp
|
||||
|
||||
/-- The evaluation map, used to evaluate indices of tensors.
|
||||
Important Note: The evaluation map is in general, not equivariant with respect to
|
||||
group actions. It is a morphism in the underlying module category, not the category
|
||||
of representations. -/
|
||||
def evalMap {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) :
|
||||
(S.F.obj (OverColor.mk c)).V ⟶ (S.F.obj (OverColor.mk (c ∘ i.succAbove))).V :=
|
||||
(S.evalIso c i).hom.hom ≫ ((Action.forgetMonoidal _ _).μIso _ _).inv
|
||||
≫ ModuleCat.asHom (TensorProduct.map (S.evalLinearMap i e) LinearMap.id) ≫
|
||||
ModuleCat.asHom (TensorProduct.lid S.k _).toLinearMap
|
||||
|
||||
lemma evalMap_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i)))
|
||||
(x : (i : Fin n.succ) → S.FD.obj (Discrete.mk (c i))) :
|
||||
(S.evalMap i e) (PiTensorProduct.tprod S.k x) =
|
||||
(((S.basis (c i)).repr (x i) e) : S.k) •
|
||||
(PiTensorProduct.tprod S.k
|
||||
(fun k => x (i.succAbove k)) : S.F.obj (OverColor.mk (c ∘ i.succAbove))) := by
|
||||
rw [evalMap]
|
||||
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor, Action.forget_obj, Functor.id_obj, mk_hom,
|
||||
Function.comp_apply, ModuleCat.coe_comp]
|
||||
erw [evalIso_tprod]
|
||||
change ((TensorProduct.lid S.k ↑((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove))).V))
|
||||
(((TensorProduct.map (S.evalLinearMap i e) LinearMap.id))
|
||||
(((Action.forgetMonoidal (ModuleCat S.k) (MonCat.of S.G)).μIso (S.FD.obj { as := c i })
|
||||
((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove)))).inv
|
||||
(x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun k => x (i.succAbove k)))) = _
|
||||
simp only [Nat.succ_eq_add_one, Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor,
|
||||
Action.forget_obj, Action.instMonoidalCategory_tensorObj_V, MonoidalFunctor.μIso,
|
||||
Action.forgetMonoidal_toLaxMonoidalFunctor_μ, asIso_inv, IsIso.inv_id, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
Functor.id_obj, mk_hom, Function.comp_apply, ModuleCat.id_apply, TensorProduct.map_tmul,
|
||||
LinearMap.id_coe, id_eq, TensorProduct.lid_tmul]
|
||||
rfl
|
||||
|
||||
end TensorSpecies
|
||||
|
||||
end
|
45
HepLean/Tensors/TensorSpecies/RepIso.lean
Normal file
45
HepLean/Tensors/TensorSpecies/RepIso.lean
Normal file
|
@ -0,0 +1,45 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.TensorSpecies.Basic
|
||||
/-!
|
||||
|
||||
# Isomorphism between rep of color `c` and rep of dual color.
|
||||
|
||||
-/
|
||||
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
noncomputable section
|
||||
|
||||
namespace TensorSpecies
|
||||
variable (S : TensorSpecies)
|
||||
|
||||
/-- The morphism from `S.FD.obj (Discrete.mk c)` to `S.FD.obj (Discrete.mk (S.τ c))`
|
||||
defined by contracting with the metric. -/
|
||||
def toDualRep (c : S.C) : S.FD.obj (Discrete.mk c) ⟶ S.FD.obj (Discrete.mk (S.τ c)) :=
|
||||
(ρ_ (S.FD.obj (Discrete.mk c))).inv
|
||||
≫ (S.FD.obj { as := c } ◁ (S.metric.app (Discrete.mk (S.τ c))))
|
||||
≫ (α_ (S.FD.obj (Discrete.mk c)) (S.FD.obj (Discrete.mk (S.τ c)))
|
||||
(S.FD.obj (Discrete.mk (S.τ c)))).inv
|
||||
≫ (S.contr.app (Discrete.mk c) ▷ S.FD.obj { as := S.τ c })
|
||||
≫ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom
|
||||
|
||||
/-- The `toDualRep` for equal colors is the same, up-to conjugation by a trivial equivalence. -/
|
||||
lemma toDualRep_congr {c c' : S.C} (h : c = c') : S.toDualRep c = S.FD.map (Discrete.eqToHom h) ≫
|
||||
S.toDualRep c' ≫ S.FD.map (Discrete.eqToHom (congrArg S.τ h.symm)) := by
|
||||
subst h
|
||||
simp only [eqToHom_refl, Discrete.functor_map_id, Category.comp_id, Category.id_comp]
|
||||
|
||||
/-- The morphism from `S.FD.obj (Discrete.mk (S.τ c))` to `S.FD.obj (Discrete.mk c)`
|
||||
defined by contracting with the metric. -/
|
||||
def fromDualRep (c : S.C) : S.FD.obj (Discrete.mk (S.τ c)) ⟶ S.FD.obj (Discrete.mk c) :=
|
||||
S.toDualRep (S.τ c) ≫ S.FD.map (Discrete.eqToHom (S.τ_involution c))
|
||||
|
||||
end TensorSpecies
|
||||
|
||||
end
|
Loading…
Add table
Add a link
Reference in a new issue