feat: Properties of 2HDM
This commit is contained in:
parent
bd95794eb9
commit
bd83eba92f
2 changed files with 42 additions and 23 deletions
|
@ -66,6 +66,14 @@ lemma innerProd_right_zero (φ : HiggsField) : ⟪φ, 0⟫_H = 0 := by
|
|||
funext x
|
||||
simp [innerProd]
|
||||
|
||||
/-- Expands the inner product on Higgs fields in terms of complex components of the
|
||||
Higgs fields. -/
|
||||
lemma innerProd_expand' (φ1 φ2 : HiggsField) (x : SpaceTime) :
|
||||
⟪φ1, φ2⟫_H x = conj (φ1 x 0) * φ2 x 0 + conj (φ1 x 1) * φ2 x 1 := by
|
||||
simp [innerProd]
|
||||
|
||||
/-- Expands the inner product on Higgs fields in terms of real components of the
|
||||
Higgs fields. -/
|
||||
lemma innerProd_expand (φ1 φ2 : HiggsField) :
|
||||
⟪φ1, φ2⟫_H = fun x => equivRealProdCLM.symm (((φ1 x 0).re * (φ2 x 0).re
|
||||
+ (φ1 x 1).re * (φ2 x 1).re+ (φ1 x 0).im * (φ2 x 0).im + (φ1 x 1).im * (φ2 x 1).im),
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue