feat: Formalize two informal results.

This commit is contained in:
jstoobysmith 2024-09-30 14:21:58 +00:00
parent e328343aa7
commit bd95794eb9

View file

@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.BeyondTheStandardModel.TwoHDM.Basic
import Mathlib.LinearAlgebra.Matrix.PosDef
/-!
# Gauge orbits for the 2HDM
@ -14,22 +15,45 @@ The main reference for material in this section is https://arxiv.org/pdf/hep-ph/
namespace TwoHDM
informal_definition prodMatrix where
math :≈ "For two Higgs fields `Φ₁` and `Φ₂`, the map from space time to 2 x 2 complex matrices
defined by ((Φ₁^†Φ₁, Φ₂^†Φ₁), (Φ₁^†Φ₂, Φ₂^†Φ₂)). "
ref :≈ "https://arxiv.org/pdf/hep-ph/0605184 eq 3.8."
deps :≈ [``StandardModel.HiggsVec, ``SpaceTime]
open StandardModel
open ComplexConjugate
open HiggsField
noncomputable section
/-- For two Higgs fields `Φ₁` and `Φ₂`, the map from space time to 2 x 2 complex matrices
defined by ((Φ₁^†Φ₁, Φ₂^†Φ₁), (Φ₁^†Φ₂, Φ₂^†Φ₂)). -/
def prodMatrix (Φ1 Φ2 : HiggsField) (x : SpaceTime) : Matrix (Fin 2) (Fin 2) :=
!![⟪Φ1, Φ1⟫_H x, ⟪Φ2, Φ1⟫_H x; ⟪Φ1, Φ2⟫_H x, ⟪Φ2, Φ2⟫_H x]
/-- The matrix `prodMatrix` is hermitian. -/
lemma prodMatrix_hermitian (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
(prodMatrix Φ1 Φ2 x).IsHermitian := by
rw [Matrix.IsHermitian]
ext i j
fin_cases i <;> fin_cases j
· simp [prodMatrix]
· simp only [prodMatrix, innerProd, PiLp.inner_apply, RCLike.inner_apply, Fin.sum_univ_two,
Fin.isValue, Fin.zero_eta, Fin.mk_one, Matrix.conjTranspose_apply, Matrix.of_apply,
Matrix.cons_val', Matrix.cons_val_zero, Matrix.empty_val', Matrix.cons_val_fin_one,
Matrix.cons_val_one, Matrix.head_fin_const, star_add, star_mul', RCLike.star_def,
RingHomCompTriple.comp_apply, RingHom.id_apply, Matrix.head_cons]
ring
· simp only [prodMatrix, innerProd, PiLp.inner_apply, RCLike.inner_apply, Fin.sum_univ_two,
Fin.isValue, Fin.mk_one, Fin.zero_eta, Matrix.conjTranspose_apply, Matrix.of_apply,
Matrix.cons_val', Matrix.cons_val_one, Matrix.head_cons, Matrix.empty_val',
Matrix.cons_val_fin_one, Matrix.cons_val_zero, star_add, star_mul', RCLike.star_def,
RingHomCompTriple.comp_apply, RingHom.id_apply, Matrix.head_fin_const]
ring
· simp [prodMatrix]
informal_lemma prodMatrix_positive_semidefinite where
math :≈ "For all x in ``SpaceTime, ``prodMatrix at `x` is positive semidefinite."
deps :≈ [``prodMatrix, ``SpaceTime]
informal_lemma prodMatrix_hermitian where
math :≈ "For all x in ``SpaceTime, ``prodMatrix at `x` is hermitian."
deps :≈ [``prodMatrix, ``SpaceTime]
informal_lemma prodMatrix_smooth where
math :≈ "The map ``prodMatrix is a smooth function on spacetime."
deps :≈ [``prodMatrix]
end
end TwoHDM