feat: Formalize two informal results.
This commit is contained in:
parent
e328343aa7
commit
bd95794eb9
1 changed files with 33 additions and 9 deletions
|
@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.BeyondTheStandardModel.TwoHDM.Basic
|
||||
import Mathlib.LinearAlgebra.Matrix.PosDef
|
||||
/-!
|
||||
|
||||
# Gauge orbits for the 2HDM
|
||||
|
@ -14,22 +15,45 @@ The main reference for material in this section is https://arxiv.org/pdf/hep-ph/
|
|||
|
||||
namespace TwoHDM
|
||||
|
||||
informal_definition prodMatrix where
|
||||
math :≈ "For two Higgs fields `Φ₁` and `Φ₂`, the map from space time to 2 x 2 complex matrices
|
||||
defined by ((Φ₁^†Φ₁, Φ₂^†Φ₁), (Φ₁^†Φ₂, Φ₂^†Φ₂)). "
|
||||
ref :≈ "https://arxiv.org/pdf/hep-ph/0605184 eq 3.8."
|
||||
deps :≈ [``StandardModel.HiggsVec, ``SpaceTime]
|
||||
open StandardModel
|
||||
open ComplexConjugate
|
||||
open HiggsField
|
||||
|
||||
noncomputable section
|
||||
|
||||
/-- For two Higgs fields `Φ₁` and `Φ₂`, the map from space time to 2 x 2 complex matrices
|
||||
defined by ((Φ₁^†Φ₁, Φ₂^†Φ₁), (Φ₁^†Φ₂, Φ₂^†Φ₂)). -/
|
||||
def prodMatrix (Φ1 Φ2 : HiggsField) (x : SpaceTime) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
!![⟪Φ1, Φ1⟫_H x, ⟪Φ2, Φ1⟫_H x; ⟪Φ1, Φ2⟫_H x, ⟪Φ2, Φ2⟫_H x]
|
||||
|
||||
/-- The matrix `prodMatrix` is hermitian. -/
|
||||
lemma prodMatrix_hermitian (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
|
||||
(prodMatrix Φ1 Φ2 x).IsHermitian := by
|
||||
rw [Matrix.IsHermitian]
|
||||
ext i j
|
||||
fin_cases i <;> fin_cases j
|
||||
· simp [prodMatrix]
|
||||
· simp only [prodMatrix, innerProd, PiLp.inner_apply, RCLike.inner_apply, Fin.sum_univ_two,
|
||||
Fin.isValue, Fin.zero_eta, Fin.mk_one, Matrix.conjTranspose_apply, Matrix.of_apply,
|
||||
Matrix.cons_val', Matrix.cons_val_zero, Matrix.empty_val', Matrix.cons_val_fin_one,
|
||||
Matrix.cons_val_one, Matrix.head_fin_const, star_add, star_mul', RCLike.star_def,
|
||||
RingHomCompTriple.comp_apply, RingHom.id_apply, Matrix.head_cons]
|
||||
ring
|
||||
· simp only [prodMatrix, innerProd, PiLp.inner_apply, RCLike.inner_apply, Fin.sum_univ_two,
|
||||
Fin.isValue, Fin.mk_one, Fin.zero_eta, Matrix.conjTranspose_apply, Matrix.of_apply,
|
||||
Matrix.cons_val', Matrix.cons_val_one, Matrix.head_cons, Matrix.empty_val',
|
||||
Matrix.cons_val_fin_one, Matrix.cons_val_zero, star_add, star_mul', RCLike.star_def,
|
||||
RingHomCompTriple.comp_apply, RingHom.id_apply, Matrix.head_fin_const]
|
||||
ring
|
||||
· simp [prodMatrix]
|
||||
|
||||
informal_lemma prodMatrix_positive_semidefinite where
|
||||
math :≈ "For all x in ``SpaceTime, ``prodMatrix at `x` is positive semidefinite."
|
||||
deps :≈ [``prodMatrix, ``SpaceTime]
|
||||
|
||||
informal_lemma prodMatrix_hermitian where
|
||||
math :≈ "For all x in ``SpaceTime, ``prodMatrix at `x` is hermitian."
|
||||
deps :≈ [``prodMatrix, ``SpaceTime]
|
||||
|
||||
informal_lemma prodMatrix_smooth where
|
||||
math :≈ "The map ``prodMatrix is a smooth function on spacetime."
|
||||
deps :≈ [``prodMatrix]
|
||||
|
||||
end
|
||||
end TwoHDM
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue