Merge pull request #31 from pitmonticone/master

Fix typos in docstrings
This commit is contained in:
Joseph Tooby-Smith 2024-05-20 06:36:08 -04:00 committed by GitHub
commit bdb960b7c3
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 24 additions and 24 deletions

View file

@ -77,7 +77,7 @@ namespace ACCSystemLinear
structure LinSols (χ : ACCSystemLinear) where
/-- The underlying charge. -/
val : χ.1.charges
/-- The condition that the charge satifies the linear ACCs. -/
/-- The condition that the charge satisfies the linear ACCs. -/
linearSol : ∀ i : Fin χ.numberLinear, χ.linearACCs i val = 0
/-- Two solutions are equal if the underlying charges are equal. -/
@ -172,7 +172,7 @@ namespace ACCSystemQuad
/-- The type of solutions to the linear and quadratic ACCs. -/
structure QuadSols (χ : ACCSystemQuad) extends χ.LinSols where
/-- The condition that the charge satifies the quadratic ACCs. -/
/-- The condition that the charge satisfies the quadratic ACCs. -/
quadSol : ∀ i : Fin χ.numberQuadratic, (χ.quadraticACCs i) val = 0
/-- Two `QuadSols` are equal if the underlying charges are equal. -/
@ -225,7 +225,7 @@ namespace ACCSystem
/-- The type of solutions to the anomaly cancellation conditions. -/
structure Sols (χ : ACCSystem) extends χ.QuadSols where
/-- The condition that the charge satifies the cubic ACC. -/
/-- The condition that the charge satisfies the cubic ACC. -/
cubicSol : χ.cubicACC val = 0
/-- Two solutions are equal if the underlying charges are equal. -/

View file

@ -206,7 +206,7 @@ lemma accSU2_ext {S T : MSSMCharges.charges}
rw [hd, hu]
rfl
/-- The anomaly cancelation condition for SU(3) anomaly. -/
/-- The anomaly cancellation condition for SU(3) anomaly. -/
@[simp]
def accSU3 : MSSMCharges.charges →ₗ[] where
toFun S := ∑ i, (2 * (Q S i) + (U S i) + (D S i))

View file

@ -8,7 +8,7 @@ import Mathlib.Tactic.Polyrith
/-!
# Hypercharge in MSSM.
Relavent definitions for the MSSM hypercharge.
Relevant definitions for the MSSM hypercharge.
-/

View file

@ -67,7 +67,7 @@ lemma line_in_cubic_P_P_P! {S : (PureU1 (2 * n.succ)).LinSols} (h : lineInCubic
linear_combination 2 / 3 * (lineInCubic_expand h g f hS 1 1) -
(lineInCubic_expand h g f hS 1 2) / 6
/-- We say a `LinSol` satifies `lineInCubicPerm` if all its permutations satsify `lineInCubic`. -/
/-- We say a `LinSol` satisfies `lineInCubicPerm` if all its permutations satisfy `lineInCubic`. -/
def lineInCubicPerm (S : (PureU1 (2 * n.succ)).LinSols) : Prop :=
∀ (M : (FamilyPermutations (2 * n.succ)).group ),
lineInCubic ((FamilyPermutations (2 * n.succ)).linSolRep M S)

View file

@ -12,7 +12,7 @@ import Mathlib.RepresentationTheory.Basic
/-!
# Line in plane condition
We say a `LinSol` satifies the `line in plane` condition if for all distinct `i1`, `i2`, `i3` in
We say a `LinSol` satisfies the `line in plane` condition if for all distinct `i1`, `i2`, `i3` in
`Fin n`, we have
`S i1 = S i2` or `S i1 = - S i2` or `2 S i3 + S i1 + S i2 = 0`.
@ -21,7 +21,7 @@ The main reference for this material is
- https://arxiv.org/pdf/1912.04804.pdf
We will show that `n ≥ 4` the `line in plane` condition on solutions inplies the
We will show that `n ≥ 4` the `line in plane` condition on solutions implies the
`constAbs` condition.
-/

View file

@ -10,7 +10,7 @@ import Mathlib.Logic.Equiv.Fin
/-!
# Basis of `LinSols` in the odd case
We give a basis of `LinSols` in the odd case. This basis has the special propoerty
We give a basis of `LinSols` in the odd case. This basis has the special property
that splits into two planes on which every point is a solution to the ACCs.
-/
universe v u

View file

@ -16,10 +16,10 @@ import Mathlib.RepresentationTheory.Basic
# Line In Cubic Odd case
We say that a linear solution satisfies the `lineInCubic` property
if the line through that point and through the two different planes formed by the baisis of
if the line through that point and through the two different planes formed by the basis of
`LinSols` lies in the cubic.
We show that for a solution all its permutations satsfiy this property,
We show that for a solution all its permutations satisfy this property,
then the charge must be zero.
The main reference for this file is:
@ -34,7 +34,7 @@ open BigOperators
variable {n : }
open VectorLikeOddPlane
/-- A property on `LinSols`, statified if every point on the line between the two planes
/-- A property on `LinSols`, satisfied if every point on the line between the two planes
in the basis through that point is in the cubic. -/
def lineInCubic (S : (PureU1 (2 * n + 1)).LinSols) : Prop :=
∀ (g f : Fin n → ) (_ : S.val = Pa g f) (a b : ) ,
@ -64,7 +64,7 @@ lemma line_in_cubic_P_P_P! {S : (PureU1 (2 * n + 1)).LinSols} (h : lineInCubic S
/-- We say a `LinSol` satifies `lineInCubicPerm` if all its permutations satsify `lineInCubic`. -/
/-- We say a `LinSol` satisfies `lineInCubicPerm` if all its permutations satisfy `lineInCubic`. -/
def lineInCubicPerm (S : (PureU1 (2 * n + 1)).LinSols) : Prop :=
∀ (M : (FamilyPermutations (2 * n + 1)).group ),
lineInCubic ((FamilyPermutations (2 * n + 1)).linSolRep M S)

View file

@ -13,7 +13,7 @@ import Mathlib.Logic.Equiv.Fin
/-!
# Anomaly cancellation conditions for n family SM.
We define the ACC system for the Standard Model with`n`-famlies and no RHN.
We define the ACC system for the Standard Model with`n`-families and no RHN.
-/
@ -21,7 +21,7 @@ universe v u
open Nat
open BigOperators
/-- Aassociate to each (including RHN) SM fermion a set of charges-/
/-- Associate to each (including RHN) SM fermion a set of charges-/
@[simps!]
def SMCharges (n : ) : ACCSystemCharges := ACCSystemChargesMk (5 * n)

View file

@ -7,7 +7,7 @@ import HepLean.AnomalyCancellation.SM.Basic
/-!
# Family maps for the Standard Model ACCs
We define the a series of maps between the charges for different numbers of famlies.
We define the a series of maps between the charges for different numbers of families.
-/
@ -84,7 +84,7 @@ other charges zero. -/
def familyEmbedding (m n : ) : (SMCharges m).charges →ₗ[] (SMCharges n).charges :=
chargesMapOfSpeciesMap (speciesEmbed m n)
/-- For species, the embeddding of the `1`-family charges into the `n`-family charges in
/-- For species, the embedding of the `1`-family charges into the `n`-family charges in
a universal manor. -/
@[simps!]
def speciesFamilyUniversial (n : ) :
@ -98,7 +98,7 @@ def speciesFamilyUniversial (n : ) :
simp [HSMul.hSMul]
--rw [show Rat.cast a = a from rfl]
/-- The embeddding of the `1`-family charges into the `n`-family charges in
/-- The embedding of the `1`-family charges into the `n`-family charges in
a universal manor. -/
def familyUniversal ( n : ) : (SMCharges 1).charges →ₗ[] (SMCharges n).charges :=
chargesMapOfSpeciesMap (speciesFamilyUniversial n)

View file

@ -12,7 +12,7 @@ import HepLean.AnomalyCancellation.SM.NoGrav.One.LinearParameterization
The main result of this file is the conclusion of this paper:
https://arxiv.org/abs/1907.00514
That eveery solution to the ACCs without gravity satifies for free the gravitational anomaly.
That eveery solution to the ACCs without gravity satisfies for free the gravitational anomaly.
-/
universe v u
@ -67,7 +67,7 @@ lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0
rw [← hS']
exact S'.grav_of_cubic hC FLTThree
/-- Any solution to the ACCs without gravity satifies the gravitational ACC. -/
/-- Any solution to the ACCs without gravity satisfies the gravitational ACC. -/
theorem accGravSatisfied {S : (SMNoGrav 1).Sols} (FLTThree : FermatLastTheoremWith 3) :
accGrav S.val = 0 := by
by_cases hQ : Q S.val (0 : Fin 1)= 0

View file

@ -7,7 +7,7 @@ import HepLean.AnomalyCancellation.SMNu.Basic
/-!
# Family maps for the Standard Model for RHN ACCs
We define the a series of maps between the charges for different numbers of famlies.
We define the a series of maps between the charges for different numbers of families.
-/
@ -89,7 +89,7 @@ other charges zero. -/
def familyEmbedding (m n : ) : (SMνCharges m).charges →ₗ[] (SMνCharges n).charges :=
chargesMapOfSpeciesMap (speciesEmbed m n)
/-- For species, the embeddding of the `1`-family charges into the `n`-family charges in
/-- For species, the embedding of the `1`-family charges into the `n`-family charges in
a universal manor. -/
@[simps!]
def speciesFamilyUniversial (n : ) :
@ -103,7 +103,7 @@ def speciesFamilyUniversial (n : ) :
simp [HSMul.hSMul]
-- rw [show Rat.cast a = a from rfl]
/-- The embeddding of the `1`-family charges into the `n`-family charges in
/-- The embedding of the `1`-family charges into the `n`-family charges in
a universal manor. -/
def familyUniversal (n : ) : (SMνCharges 1).charges →ₗ[] (SMνCharges n).charges :=
chargesMapOfSpeciesMap (speciesFamilyUniversial n)

View file

@ -9,7 +9,7 @@ import Mathlib.Tactic.Polyrith
/-!
# The CKM Matrix
The definition of the type of CKM matries as unitary $3×3$-matries.
The definition of the type of CKM matrices as unitary $3×3$-matrices.
An equivalence relation on CKM matrices is defined, where two matrices are equivalent if they are
related by phase shifts.