docs: More doc strings

This commit is contained in:
jstoobysmith 2024-11-12 06:55:51 +00:00
parent ddf2154af6
commit bdf71e0f5a

View file

@ -155,17 +155,22 @@ lemma normSq_apply_re_self (φ : HiggsField) (x : SpaceTime) :
lemma toHiggsVec_norm (φ : HiggsField) (x : SpaceTime) :
‖φ x‖ = ‖φ.toHiggsVec x‖ := rfl
/-- The expansion of the norm squared of into components. -/
lemma normSq_expand (φ : HiggsField) :
φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1)).re := by
funext x
simp [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add, @norm_sq_eq_inner ]
/-- The norm squared of a higgs field at any point is non-negative. -/
lemma normSq_nonneg (φ : HiggsField) (x : SpaceTime) : 0 ≤ φ.normSq x := by
simp [normSq, ge_iff_le, norm_nonneg, pow_nonneg]
/-- If the norm square of a Higgs field at a point `x` is zero, then the Higgs field
at that point is zero. -/
lemma normSq_zero (φ : HiggsField) (x : SpaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by
simp [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero]
/-- The norm squared of the Higgs field is a smooth function on space-time. -/
lemma normSq_smooth (φ : HiggsField) : Smooth 𝓘(, SpaceTime) 𝓘(, ) φ.normSq := by
rw [normSq_expand]
refine Smooth.add ?_ ?_
@ -176,6 +181,8 @@ lemma normSq_smooth (φ : HiggsField) : Smooth 𝓘(, SpaceTime) 𝓘(,
exact ((φ.apply_re_smooth 1).smul (φ.apply_re_smooth 1)).add $
(φ.apply_im_smooth 1).smul (φ.apply_im_smooth 1)
/-- The norm-squared of the Higgs field `HiggsField.ofReal a` for a non-negative real number `a`,
is equal to `a`. -/
lemma ofReal_normSq {a : } (ha : 0 ≤ a) (x : SpaceTime) : (ofReal a).normSq x = a := by
simp only [normSq, ofReal, HiggsVec.toField_apply, ha, HiggsVec.ofReal_normSq]