refactor:Lint
This commit is contained in:
parent
809b80ff88
commit
bdff1b2704
9 changed files with 57 additions and 45 deletions
|
@ -99,6 +99,11 @@ import HepLean.StandardModel.HiggsBoson.PointwiseInnerProd
|
|||
import HepLean.StandardModel.HiggsBoson.Potential
|
||||
import HepLean.StandardModel.Representations
|
||||
import HepLean.Tensors.Basic
|
||||
import HepLean.Tensors.ComplexLorentz.Basic
|
||||
import HepLean.Tensors.ComplexLorentz.ColorFun
|
||||
import HepLean.Tensors.ComplexLorentz.ContrNatTransform
|
||||
import HepLean.Tensors.ComplexLorentz.Examples
|
||||
import HepLean.Tensors.ComplexLorentz.TensorStruct
|
||||
import HepLean.Tensors.Contraction
|
||||
import HepLean.Tensors.EinsteinNotation.Basic
|
||||
import HepLean.Tensors.EinsteinNotation.IndexNotation
|
||||
|
@ -121,6 +126,9 @@ import HepLean.Tensors.IndexNotation.IndexList.Subperm
|
|||
import HepLean.Tensors.IndexNotation.IndexString
|
||||
import HepLean.Tensors.IndexNotation.TensorIndex
|
||||
import HepLean.Tensors.MulActionTensor
|
||||
import HepLean.Tensors.OverColor.Basic
|
||||
import HepLean.Tensors.OverColor.Functors
|
||||
import HepLean.Tensors.OverColor.Iso
|
||||
import HepLean.Tensors.RisingLowering
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import HepLean.Tensors.Tree.Dot
|
||||
|
|
|
@ -30,6 +30,7 @@ inductive Color
|
|||
| up : Color
|
||||
| down : Color
|
||||
|
||||
/-- The involution taking a colour to its dual. -/
|
||||
def τ : Color → Color
|
||||
| Color.upL => Color.downL
|
||||
| Color.downL => Color.upL
|
||||
|
@ -38,6 +39,7 @@ def τ : Color → Color
|
|||
| Color.up => Color.down
|
||||
| Color.down => Color.up
|
||||
|
||||
/-- The function taking a color to the dimension of the basis of vectors. -/
|
||||
def evalNo : Color → ℕ
|
||||
| Color.upL => 2
|
||||
| Color.downL => 2
|
||||
|
|
|
@ -5,7 +5,7 @@ Authors: Joseph Tooby-Smith
|
|||
-/
|
||||
import HepLean.Tensors.OverColor.Basic
|
||||
import HepLean.Tensors.OverColor.Functors
|
||||
import HepLean.Tensors.COmplexLorentz.ColorFun
|
||||
import HepLean.Tensors.ComplexLorentz.ColorFun
|
||||
import HepLean.Mathematics.PiTensorProduct
|
||||
/-!
|
||||
|
||||
|
@ -25,12 +25,10 @@ open IndexNotation
|
|||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
def tensorateContrPair (c : OverColor Color) : (OverColor.contrPair Color τ ⊗⋙ colorFunMon).obj c ≅
|
||||
(colorFunMon.obj c) ⊗ colorFunMon.obj ((OverColor.map τ).obj c) :=
|
||||
(colorFunMon.μIso c ((OverColor.map τ).obj c)).symm
|
||||
|
||||
namespace pairwiseRepFun
|
||||
|
||||
/-- Given an object `c : OverColor Color` the representation defined by
|
||||
`⨂[R] x, colorToRep (c.hom x) ⊗[R] colorToRep (τ (c.hom x))`. -/
|
||||
def obj' (c : OverColor Color) : Rep ℂ SL(2, ℂ) := Rep.of {
|
||||
toFun := fun M => PiTensorProduct.map (fun x =>
|
||||
TensorProduct.map ((colorToRep (c.hom x)).ρ M) ((colorToRep (τ (c.hom x))).ρ M)),
|
||||
|
@ -42,7 +40,7 @@ def obj' (c : OverColor Color) : Rep ℂ SL(2, ℂ) := Rep.of {
|
|||
simp only [LinearMap.compMultilinearMap_apply, PiTensorProduct.map_tprod, LinearMap.mul_apply]
|
||||
apply congrArg
|
||||
funext i
|
||||
change _ = (TensorProduct.map _ _ ∘ₗ TensorProduct.map _ _ ) (x' i)
|
||||
change _ = (TensorProduct.map _ _ ∘ₗ TensorProduct.map _ _) (x' i)
|
||||
rw [← TensorProduct.map_comp]
|
||||
rfl}
|
||||
|
||||
|
@ -59,34 +57,20 @@ lemma mapToLinearEquiv'_tprod {f g : OverColor Color} (m : f ⟶ g)
|
|||
(x : (i : f.left) → (colorToRep (f.hom i)).V ⊗[ℂ] (colorToRep (τ (f.hom i))).V) :
|
||||
mapToLinearEquiv' m (PiTensorProduct.tprod ℂ x) =
|
||||
PiTensorProduct.tprod ℂ fun i =>
|
||||
(TensorProduct.congr (colorToRepCongr (OverColor.Hom.toEquiv_symm_apply m i ))
|
||||
(colorToRepCongr (mapToLinearEquiv'.proof_4 m i ))) (x ((OverColor.Hom.toEquiv m).symm i)) := by
|
||||
(TensorProduct.congr (colorToRepCongr (OverColor.Hom.toEquiv_symm_apply m i))
|
||||
(colorToRepCongr (mapToLinearEquiv'.proof_4 m i))) (x ((OverColor.Hom.toEquiv m).symm i)) := by
|
||||
simp [mapToLinearEquiv']
|
||||
change (PiTensorProduct.congr fun i => TensorProduct.congr (colorToRepCongr _) (colorToRepCongr _))
|
||||
((PiTensorProduct.reindex ℂ (fun x => ↑(colorToRep (f.hom x)).V ⊗[ℂ] ↑(colorToRep (τ (f.hom x))).V)
|
||||
(OverColor.Hom.toEquiv m))
|
||||
((PiTensorProduct.tprod ℂ) x)) = _
|
||||
change (PiTensorProduct.congr fun i => TensorProduct.congr (colorToRepCongr _)
|
||||
(colorToRepCongr _)) ((PiTensorProduct.reindex ℂ
|
||||
(fun x => ↑(colorToRep (f.hom x)).V ⊗[ℂ] ↑(colorToRep (τ (f.hom x))).V)
|
||||
(OverColor.Hom.toEquiv m)) ((PiTensorProduct.tprod ℂ) x)) = _
|
||||
rw [PiTensorProduct.reindex_tprod]
|
||||
erw [PiTensorProduct.congr_tprod]
|
||||
rfl
|
||||
|
||||
|
||||
end pairwiseRepFun
|
||||
|
||||
def pairwiseRep (c : OverColor Color) : Rep ℂ SL(2, ℂ) := Rep.of {
|
||||
toFun := fun M => PiTensorProduct.map (fun x =>
|
||||
TensorProduct.map ((colorToRep (c.hom x)).ρ M) ((colorToRep (τ (c.hom x))).ρ M )),
|
||||
map_one' := by
|
||||
simp
|
||||
map_mul' := fun x y => by
|
||||
simp only [Functor.id_obj, _root_.map_mul]
|
||||
ext x' : 2
|
||||
simp only [LinearMap.compMultilinearMap_apply, PiTensorProduct.map_tprod, LinearMap.mul_apply]
|
||||
apply congrArg
|
||||
funext i
|
||||
change _ = (TensorProduct.map _ _ ∘ₗ TensorProduct.map _ _ ) (x' i)
|
||||
rw [← TensorProduct.map_comp]
|
||||
rfl}
|
||||
/-
|
||||
|
||||
def contrPairPairwiseRep (c : OverColor Color) :
|
||||
(colorFunMon.obj c) ⊗ colorFunMon.obj ((OverColor.map τ).obj c) ⟶
|
||||
|
@ -100,8 +84,9 @@ def contrPairPairwiseRep (c : OverColor Color) :
|
|||
Action.FunctorCategoryEquivalence.functor_obj_obj, Action.tensor_ρ', LinearMap.coe_comp,
|
||||
Function.comp_apply]
|
||||
change (TensorProduct.lift
|
||||
(PiTensorProduct.map₂ fun x => TensorProduct.mk ℂ ↑(colorToRep (c.hom x)).V ↑(colorToRep (τ (c.hom x))).V))
|
||||
((TensorProduct.map _ _)
|
||||
(PiTensorProduct.map₂ fun x => TensorProduct.mk ℂ ↑(colorToRep (c.hom x)).V
|
||||
↑(colorToRep (τ (c.hom x))).V))
|
||||
((TensorProduct.map _ _)
|
||||
((PiTensorProduct.tprod ℂ) x ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) y)) = _
|
||||
rw [TensorProduct.map_tmul]
|
||||
erw [colorFun.obj_ρ_tprod, colorFun.obj_ρ_tprod]
|
||||
|
@ -109,7 +94,8 @@ def contrPairPairwiseRep (c : OverColor Color) :
|
|||
erw [PiTensorProduct.map₂_tprod_tprod]
|
||||
change _ = ((pairwiseRep c).ρ M)
|
||||
((TensorProduct.lift
|
||||
(PiTensorProduct.map₂ fun x => TensorProduct.mk ℂ ↑(colorToRep (c.hom x)).V ↑(colorToRep (τ (c.hom x))).V))
|
||||
(PiTensorProduct.map₂ fun x => TensorProduct.mk ℂ ↑(colorToRep (c.hom x)).V
|
||||
↑(colorToRep (τ (c.hom x))).V))
|
||||
((PiTensorProduct.tprod ℂ) x ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) y))
|
||||
simp only [mk_apply, Functor.id_obj, lift.tmul]
|
||||
rw [PiTensorProduct.map₂_tprod_tprod]
|
||||
|
@ -117,7 +103,6 @@ def contrPairPairwiseRep (c : OverColor Color) :
|
|||
mk_apply]
|
||||
erw [PiTensorProduct.map_tprod]
|
||||
rfl
|
||||
|
||||
|
||||
-/
|
||||
end
|
||||
end Fermion
|
||||
|
|
|
@ -21,11 +21,11 @@ open TensorProduct
|
|||
open IndexNotation
|
||||
open CategoryTheory
|
||||
|
||||
|
||||
noncomputable section
|
||||
|
||||
namespace complexLorentzTensor
|
||||
|
||||
/-- The color map for a 2d tensor with the first index up and the second index down. -/
|
||||
def upDown : Fin 2 → complexLorentzTensor.C
|
||||
| 0 => Fermion.Color.up
|
||||
| 1 => Fermion.Color.down
|
||||
|
|
|
@ -20,9 +20,9 @@ open TensorProduct
|
|||
open IndexNotation
|
||||
open CategoryTheory
|
||||
|
||||
|
||||
noncomputable section
|
||||
|
||||
/-- The tensor structure for complex Lorentz tensors. -/
|
||||
def complexLorentzTensor : TensorStruct where
|
||||
C := Fermion.Color
|
||||
G := SL(2, ℂ)
|
||||
|
|
|
@ -65,6 +65,7 @@ lemma toEquiv_comp_inv_apply (m : f ⟶ g) (i : g.left) :
|
|||
f.hom ((OverColor.Hom.toEquiv m).symm i) = g.hom i := by
|
||||
simpa [toEquiv, types_comp] using congrFun m.inv.w i
|
||||
|
||||
/-- Given a morphism in `OverColor C`, the corresponding isomorphism. -/
|
||||
def toIso (m : f ⟶ g) : f ≅ g := {
|
||||
hom := m,
|
||||
inv := m.symm,
|
||||
|
|
|
@ -14,7 +14,6 @@ namespace OverColor
|
|||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
|
||||
/-- The monoidal functor from `OverColor C` to `OverColor D` constructed from a map
|
||||
`f : C → D`. -/
|
||||
def map {C D : Type} (f : C → D) : MonoidalFunctor (OverColor C) (OverColor D) where
|
||||
|
@ -50,7 +49,7 @@ def map {C D : Type} (f : C → D) : MonoidalFunctor (OverColor C) (OverColor D)
|
|||
| Sum.inr x => rfl
|
||||
|
||||
/-- The tensor product on `OverColor C` as a monoidal functor. -/
|
||||
def tensor (C : Type) : MonoidalFunctor (OverColor C × OverColor C) (OverColor C) where
|
||||
def tensor (C : Type) : MonoidalFunctor (OverColor C × OverColor C) (OverColor C) where
|
||||
toFunctor := MonoidalCategory.tensor (OverColor C)
|
||||
ε := Over.isoMk (Equiv.sumEmpty Empty Empty).symm.toIso (by
|
||||
ext x
|
||||
|
@ -93,13 +92,16 @@ def tensor (C : Type) : MonoidalFunctor (OverColor C × OverColor C) (OverColor
|
|||
| Sum.inl (Sum.inr x) => rfl
|
||||
| Sum.inr x => exact Empty.elim x
|
||||
|
||||
/-- The monoidal functor from `OverColor C` to `OverColor C × OverColor C` landing on the
|
||||
diagonal. -/
|
||||
def diag (C : Type) : MonoidalFunctor (OverColor C) (OverColor C × OverColor C) :=
|
||||
MonoidalFunctor.diag (OverColor C)
|
||||
|
||||
/-- The constant monoidal functor from `OverColor C` to itself landing on `𝟙_ (OverColor C)`. -/
|
||||
def const (C : Type) : MonoidalFunctor (OverColor C) (OverColor C) where
|
||||
toFunctor := (Functor.const (OverColor C)).obj (𝟙_ (OverColor C))
|
||||
ε := 𝟙 (𝟙_ (OverColor C))
|
||||
μ _ _:= (λ_ (𝟙_ (OverColor C))).hom
|
||||
μ _ _:= (λ_ (𝟙_ (OverColor C))).hom
|
||||
μ_natural_left _ _ := by
|
||||
simp only [Functor.const_obj_obj, Functor.const_obj_map, MonoidalCategory.whiskerRight_id,
|
||||
Category.id_comp, Iso.hom_inv_id, Category.comp_id]
|
||||
|
@ -120,9 +122,11 @@ def const (C : Type) : MonoidalFunctor (OverColor C) (OverColor C) where
|
|||
| Sum.inl i => exact Empty.elim i
|
||||
| Sum.inr i => exact Empty.elim i
|
||||
|
||||
/-- The monoidal functor from `OverColor C` to `OverColor C` taking `f` to `f ⊗ τ_* f`. -/
|
||||
def contrPair (C : Type) (τ : C → C) : MonoidalFunctor (OverColor C) (OverColor C) :=
|
||||
OverColor.diag C
|
||||
⊗⋙ (MonoidalFunctor.prod (MonoidalFunctor.id (OverColor C)) (OverColor.map τ))
|
||||
⊗⋙ OverColor.tensor C
|
||||
|
||||
end OverColor
|
||||
end IndexNotation
|
||||
|
|
|
@ -25,6 +25,7 @@ open MonoidalCategory
|
|||
def equivToIso {c : X → C} (e : X ≃ Y) : mk c ≅ mk (c ∘ e.symm) :=
|
||||
Hom.toIso (Over.isoMk e.toIso ((Iso.eq_inv_comp e.toIso).mp rfl))
|
||||
|
||||
/-- Given a map `X ⊕ Y → C`, the isomorphism `mk c ≅ mk (c ∘ Sum.inl) ⊗ mk (c ∘ Sum.inr)`. -/
|
||||
def mkSum (c : X ⊕ Y → C) : mk c ≅ mk (c ∘ Sum.inl) ⊗ mk (c ∘ Sum.inr) :=
|
||||
Hom.toIso (Over.isoMk (Equiv.refl _).toIso (by
|
||||
ext x
|
||||
|
@ -32,6 +33,7 @@ def mkSum (c : X ⊕ Y → C) : mk c ≅ mk (c ∘ Sum.inl) ⊗ mk (c ∘ Sum.in
|
|||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl))
|
||||
|
||||
/-- The isomorphism between objects in `OverColor C` given equality of maps. -/
|
||||
def mkIso {c1 c2 : X → C} (h : c1 = c2) : mk c1 ≅ mk c2 :=
|
||||
Hom.toIso (Over.isoMk (Equiv.refl _).toIso (by
|
||||
subst h
|
||||
|
@ -53,11 +55,13 @@ lemma finExtractOne_symm_inr {n : ℕ} (i : Fin n.succ) :
|
|||
simp only [Nat.succ_eq_add_one, finExtractOne, Function.comp_apply, Equiv.symm_trans_apply,
|
||||
finCongr_symm, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply,
|
||||
Equiv.coe_refl, Sum.map_inr, finCongr_apply, Fin.coe_cast]
|
||||
change (finSumFinEquiv (Sum.map (⇑(finSumFinEquiv.symm.trans (Equiv.sumComm (Fin ↑i) (Fin 1))).symm) id
|
||||
((Equiv.sumAssoc (Fin 1) (Fin ↑i) (Fin (n - i))).symm (Sum.inr (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)))))).val = _
|
||||
change (finSumFinEquiv
|
||||
(Sum.map (⇑(finSumFinEquiv.symm.trans (Equiv.sumComm (Fin ↑i) (Fin 1))).symm) id
|
||||
((Equiv.sumAssoc (Fin 1) (Fin ↑i) (Fin (n - i))).symm
|
||||
(Sum.inr (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)))))).val = _
|
||||
by_cases hi : x.1 < i.1
|
||||
· have h1 : (finSumFinEquiv.symm (Fin.cast (finExtractOne.proof_2 i).symm x)) =
|
||||
Sum.inl ⟨x, hi⟩ := by
|
||||
Sum.inl ⟨x, hi⟩ := by
|
||||
rw [← finSumFinEquiv_symm_apply_castAdd]
|
||||
apply congrArg
|
||||
ext
|
||||
|
@ -78,7 +82,7 @@ lemma finExtractOne_symm_inr {n : ℕ} (i : Fin n.succ) :
|
|||
rw [← finSumFinEquiv_symm_apply_natAdd]
|
||||
apply congrArg
|
||||
ext
|
||||
simp
|
||||
simp only [Nat.succ_eq_add_one, Fin.coe_cast, Fin.natAdd_mk]
|
||||
omega
|
||||
rw [h1, Fin.succAbove]
|
||||
split
|
||||
|
@ -91,8 +95,8 @@ lemma finExtractOne_symm_inr {n : ℕ} (i : Fin n.succ) :
|
|||
@[simp]
|
||||
lemma finExtractOne_symm_inr_apply {n : ℕ} (i : Fin n.succ) (x : Fin n) :
|
||||
(finExtractOne i).symm (Sum.inr x) = i.succAbove x := calc
|
||||
_ = ((finExtractOne i).symm ∘ Sum.inr) x := rfl
|
||||
_ = i.succAbove x := by rw [finExtractOne_symm_inr]
|
||||
_ = ((finExtractOne i).symm ∘ Sum.inr) x := rfl
|
||||
_ = i.succAbove x := by rw [finExtractOne_symm_inr]
|
||||
|
||||
@[simp]
|
||||
lemma finExtractOne_symm_inl_apply {n : ℕ} (i : Fin n.succ) :
|
||||
|
@ -104,6 +108,8 @@ lemma finExtractOne_symm_inl_apply {n : ℕ} (i : Fin n.succ) :
|
|||
ext
|
||||
rfl
|
||||
|
||||
/-- The equivalence of types `Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n` extracting
|
||||
the `i` and `(i.succAbove j)`. -/
|
||||
def finExtractTwo {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
Fin n.succ.succ ≃ (Fin 1 ⊕ Fin 1) ⊕ Fin n :=
|
||||
(finExtractOne i).trans <|
|
||||
|
@ -129,11 +135,14 @@ lemma finExtractTwo_symm_inl_inr_apply {n : ℕ} (i : Fin n.succ.succ) (j : Fin
|
|||
simp
|
||||
|
||||
@[simp]
|
||||
lemma finExtractTwo_symm_inl_inl_apply {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
lemma finExtractTwo_symm_inl_inl_apply {n : ℕ} (i : Fin n.succ.succ) (j : Fin n.succ) :
|
||||
(finExtractTwo i j).symm (Sum.inl (Sum.inl 0)) = i := by
|
||||
rw [finExtractTwo]
|
||||
simp
|
||||
|
||||
/-- The isomorphism between a `Fin 1 ⊕ Fin 1 → C` satisfying the condition
|
||||
`c (Sum.inr 0) = τ (c (Sum.inl 0))`
|
||||
and an object in the image of `contrPair`. -/
|
||||
def contrPairFin1Fin1 (τ : C → C) (c : Fin 1 ⊕ Fin 1 → C)
|
||||
(h : c (Sum.inr 0) = τ (c (Sum.inl 0))) :
|
||||
OverColor.mk c ≅ (contrPair C τ).obj (OverColor.mk (fun (_ : Fin 1) => c (Sum.inl 0))) :=
|
||||
|
@ -149,6 +158,8 @@ def contrPairFin1Fin1 (τ : C → C) (c : Fin 1 ⊕ Fin 1 → C)
|
|||
rw [h]
|
||||
rfl))
|
||||
|
||||
/-- The Isomorphism between a `Fin n.succ.succ → C` and the product containing an object in the
|
||||
image of `contrPair` based on the given values. -/
|
||||
def contrPairEquiv {n : ℕ} (τ : C → C) (c : Fin n.succ.succ → C) (i : Fin n.succ.succ)
|
||||
(j : Fin n.succ) (h : c (i.succAbove j) = τ (c i)) :
|
||||
OverColor.mk c ≅ ((contrPair C τ).obj (Over.mk (fun (_ : Fin 1) => c i))) ⊗
|
||||
|
|
|
@ -64,7 +64,8 @@ inductive TensorTree (S : TensorStruct) : ∀ {n : ℕ}, (Fin n → S.C) → Typ
|
|||
(i : Fin n.succ) → (j : Fin m.succ) → TensorTree S c → TensorTree S c1 →
|
||||
TensorTree S (Sum.elim (c ∘ Fin.succAbove i) (c1 ∘ Fin.succAbove j) ∘ finSumFinEquiv.symm)
|
||||
| contr {n : ℕ} {c : Fin n.succ.succ → S.C} : (i : Fin n.succ.succ) →
|
||||
(j : Fin n.succ) → (h : c (i.succAbove j) = S.τ (c i)) → TensorTree S c → TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
||||
(j : Fin n.succ) → (h : c (i.succAbove j) = S.τ (c i)) → TensorTree S c →
|
||||
TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j)
|
||||
| jiggle {n : ℕ} {c : Fin n → S.C} : (i : Fin n) → TensorTree S c →
|
||||
TensorTree S (Function.update c i (S.τ (c i)))
|
||||
| eval {n : ℕ} {c : Fin n.succ → S.C} :
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue