refactor: Lint
This commit is contained in:
parent
51158267d3
commit
be64dbb8bb
4 changed files with 121 additions and 89 deletions
|
@ -42,10 +42,10 @@ scoped[TensorSpecies] notation "⟪" ψ "," φ "⟫ₜₛ" => contractSelfField
|
|||
|
||||
/-- The map `contractSelfField` is equivariant with respect to the group action. -/
|
||||
@[simp]
|
||||
lemma contractSelfField_equivariant {S : TensorSpecies} {c : S.C} {g : S.G}
|
||||
lemma contractSelfField_equivariant {S : TensorSpecies} {c : S.C} {g : S.G}
|
||||
(ψ : S.FD.obj (Discrete.mk c)) (φ : S.FD.obj (Discrete.mk c)) :
|
||||
⟪(S.FD.obj (Discrete.mk c)).ρ g ψ, (S.FD.obj (Discrete.mk c)).ρ g φ⟫ₜₛ = ⟪ψ, φ⟫ₜₛ := by
|
||||
simpa using congrFun (congrArg (fun x => x.toFun) ((S.contractSelfHom c).comm g )) (ψ ⊗ₜ[S.k] φ)
|
||||
simpa using congrFun (congrArg (fun x => x.toFun) ((S.contractSelfHom c).comm g)) (ψ ⊗ₜ[S.k] φ)
|
||||
|
||||
informal_lemma contractSelfField_non_degenerate where
|
||||
math :≈ "The contraction of two vectors of the same color is non-degenerate.
|
||||
|
@ -85,12 +85,12 @@ def IsNormZero {c : S.C} (ψ : S.FD.obj (Discrete.mk c)) : Prop := ⟪ψ, ψ⟫
|
|||
|
||||
/-- The zero vector has norm equal to zero. -/
|
||||
@[simp]
|
||||
lemma zero_isNormZero {c : S.C} : @IsNormZero S c 0 := by
|
||||
lemma zero_isNormZero {c : S.C} : @IsNormZero S c 0 := by
|
||||
simp only [IsNormZero, tmul_zero, map_zero]
|
||||
|
||||
/-- If a vector is norm-zero, then any scalar multiple of that vector is also norm-zero. -/
|
||||
lemma smul_isNormZero_of_isNormZero {c : S.C} {ψ : S.FD.obj (Discrete.mk c)}
|
||||
(h : S.IsNormZero ψ ) (a : S.k) : S.IsNormZero (a • ψ) := by
|
||||
(h : S.IsNormZero ψ) (a : S.k) : S.IsNormZero (a • ψ) := by
|
||||
simp only [IsNormZero, tmul_smul, map_smul, smul_tmul]
|
||||
rw [h]
|
||||
simp only [smul_eq_mul, mul_zero]
|
||||
|
|
|
@ -22,7 +22,6 @@ namespace TensorSpecies
|
|||
|
||||
variable (S : TensorSpecies)
|
||||
|
||||
|
||||
/-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo`
|
||||
under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FD`. -/
|
||||
def contrFin1Fin1 {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
|
|
|
@ -48,7 +48,7 @@ lemma tprod_equivariant (g : S.G) (p : Pure S c) : (ρ g p).tprod = (S.F.obj c).
|
|||
|
||||
end Pure
|
||||
|
||||
/-- We say a tensor is pure if it is `⨂[S.k] i, p i` for some `p : Pure c`. -/
|
||||
/-- A tensor is pure if it is `⨂[S.k] i, p i` for some `p : Pure c`. -/
|
||||
def IsPure {c : OverColor S.C} (t : S.F.obj c) : Prop := ∃ p : Pure S c, t = p.tprod
|
||||
|
||||
/-- As long as we are dealing with tensors with at least one index, then the zero
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue