chore: Remove mk_hom and mk_left from simp

This commit is contained in:
jstoobysmith 2025-03-24 10:44:48 -04:00
parent 0c9951d3b6
commit becf9d1841
10 changed files with 23 additions and 16 deletions

View file

@ -287,10 +287,16 @@ lemma action_apply_eq_sum (i : Fin 1 ⊕ Fin d) (Λ : LorentzGroup d) (p : Vecto
simp [mul_add, Finset.sum_add_distrib]
ring)
intro r p
simp only [C_eq_color, TensorSpecies.F_def, Nat.reduceAdd, OverColor.mk_left,
simp only [TensorSpecies.F_def, Nat.reduceAdd, OverColor.mk_left,
Functor.id_obj, OverColor.mk_hom, PiTensorProduct.tprodCoeff_eq_smul_tprod, _root_.map_smul,
Pi.smul_apply, smul_eq_mul]
erw [OverColor.lift.objObj'_ρ_tprod]
conv_lhs =>
enter [2, 2]
simp only [C_eq_color, OverColor.lift, OverColor.lift.obj', LaxBraidedFunctor.of_toFunctor,
Nat.succ_eq_add_one, Nat.reduceAdd]
/- I beleive this erw is needed becuase of (realLorentzTensor d).G and
LorentzGroup d are different. -/
erw [OverColor.lift.objObj'_ρ_tprod]
conv_rhs =>
enter [2, x]
rw [← mul_assoc, mul_comm _ r, mul_assoc]

View file

@ -267,11 +267,9 @@ end monoidal
/-- Make an object of `OverColor C` from a map `X → C`. -/
def mk (f : X → C) : OverColor C := Over.mk f
@[simp]
lemma mk_hom (f : X → C) : (mk f).hom = f := rfl
open MonoidalCategory
@[simp]
lemma mk_left (f : X → C) : (mk f).left = X := rfl
lemma Hom.fin_ext {n : } {f g : Fin n → C} (σ σ' : OverColor.mk f ⟶ OverColor.mk g)

View file

@ -278,7 +278,7 @@ lemma extractTwo_finExtractTwo_succ {n : } (i : Fin n.succ.succ.succ) (j : Fi
simp only [Nat.succ_eq_add_one, Equiv.apply_symm_apply]
match k with
| Sum.inl (Sum.inl 0) =>
simp [-OverColor.mk_left]
simp
| Sum.inl (Sum.inr 0) =>
simp only [Fin.isValue, finExtractTwo_symm_inl_inr_apply, Sum.map_inl, id_eq]
have h1 : ((Hom.toEquiv σ) (Fin.succAbove

View file

@ -192,7 +192,8 @@ lemma contr_one_two_left_eq_contrOneTwoLeft {c1 c2 : S.C} (x : S.F.obj (OverColo
rw [contrOneTwoLeft_smul_left]
simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul]
apply congrArg
simpa using contr_one_two_left_eq_contrOneTwoLeft_tprod (PiTensorProduct.tprod k fx)
simpa [OverColor.mk_hom] using
contr_one_two_left_eq_contrOneTwoLeft_tprod (PiTensorProduct.tprod k fx)
(PiTensorProduct.tprod k fy) fx fy
/-- Expanding `contrOneTwoLeft` as a tensor tree. -/

View file

@ -54,7 +54,7 @@ lemma contrFin1Fin1_inv_tmul {n : } (c : Fin n.succ.succ → S.C)
(S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[k] y) =
PiTensorProduct.tprod k (fun k =>
match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FD.map
(eqToHom (by simp [h]))).hom y) := by
(eqToHom (by simp [h, mk_hom]))).hom y) := by
simp only [Nat.succ_eq_add_one, contrFin1Fin1, Functor.comp_obj, Discrete.functor_obj_eq_as,
Function.comp_apply, Iso.trans_symm, Iso.symm_symm_eq, Iso.trans_inv, tensorIso_inv,
Iso.symm_inv, Functor.mapIso_hom, tensor_comp, Functor.Monoidal.μIso_hom,
@ -116,7 +116,7 @@ lemma contrFin1Fin1_hom_hom_tprod {n : } (c : Fin n.succ.succ → S.C)
(x : (k : Fin 1 ⊕ Fin 1) → (S.FD.obj
{ as := (OverColor.mk ((c ∘ ⇑(PhysLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).hom k })) :
(S.contrFin1Fin1 c i j h).hom.hom (PiTensorProduct.tprod k x) =
x (Sum.inl 0) ⊗ₜ[k] ((S.FD.map (eqToHom (by simp [h]))).hom (x (Sum.inr 0))) := by
x (Sum.inl 0) ⊗ₜ[k] ((S.FD.map (eqToHom (by simp [h, mk_hom]))).hom (x (Sum.inr 0))) := by
change ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).hom _ = _
trans ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).toLinearEquiv
(PiTensorProduct.tprod k x)

View file

@ -107,7 +107,7 @@ lemma toDualRep_fromDualRep_tensorTree_metrics (c : S.C) (x : S.FD.obj (Discrete
conv_lhs =>
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <| tensorNode_of_tree _]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_left _ _ _ _]
rw [perm_tensor_eq <| perm_contr_congr 0 0 (by simp) (by
rw [perm_tensor_eq <| perm_contr_congr 0 0 (by simp [OverColor.mk_left]) (by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero,
OverColor.mk_left, Functor.id_obj, OverColor.mk_hom, Equiv.refl_symm, Equiv.coe_refl,
Function.comp_apply, id_eq, Fin.zero_eta, List.pmap.eq_1, Matrix.cons_val_zero,

View file

@ -141,10 +141,12 @@ lemma unitTensor_contr_vec_eq_self {c1 : S.C} (x : S.F.obj (OverColor.mk ![S.τ
perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; rfl))).tensor := by
conv_lhs =>
rw [contr_tensor_eq <| prod_comm _ _ _ _]
rw [perm_contr_congr 2 0 (by simp; decide) (by simp; decide)]
rw [perm_contr_congr 2 0 (by simp [mk_hom, mk_left]; decide)
(by simp [mk_hom, mk_left]; decide)]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| unitTensor_eq_dual_perm _]
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_right _ _ _ _]
rw [perm_tensor_eq <| perm_contr_congr 1 0 (by simp; decide) (by simp; decide)]
rw [perm_tensor_eq <| perm_contr_congr 1 0 (by simp [mk_hom, mk_left]; decide)
(by simp [mk_hom, mk_left]; decide)]
rw [perm_perm]
rw [perm_tensor_eq <| contr_swap _ _]
rw [perm_perm]

View file

@ -344,7 +344,7 @@ lemma prod_tensorBasis_repr_apply {n m : } {c : Fin n → S.C} {c1 : Fin m
(TensorBasis.prodEquiv.symm (b1, b2))) b
· congr 2
rw [TensorBasis.tensorBasis_prod]
simp
simp [OverColor.mk_hom]
simp only [Function.comp_apply, Basis.repr_self, Pt, P]
rw [MonoidAlgebra.single_apply, MonoidAlgebra.single_apply, MonoidAlgebra.single_apply]
obtain ⟨b, rfl⟩ := TensorBasis.prodEquiv.symm.surjective b
@ -546,7 +546,7 @@ lemma field_eq_repr {c : Fin 0 → S.C} (t : TensorTree S c) :
LinearEquiv.trans_apply, Finsupp.linearEquivFunOnFinite_single, LinearEquiv.coe_coe]
change (PiTensorProduct.isEmptyEquiv (Fin 0)) (S.fromCoordinates c
(Pi.single _ 1)) = _
simp [fromCoordinates, basisVector]
simp [fromCoordinates, basisVector, OverColor.mk_hom, OverColor.mk_left]
· simp only [Fin.default_eq_zero, mul_one]
congr
funext j

View file

@ -172,9 +172,9 @@ lemma perm_eq_iff_eq_perm {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
apply Hom.ext
ext x
change (Hom.toEquiv σ) ((Hom.toEquiv σ).symm x) = x
simp [-OverColor.mk_left]
simp
rw [h1]
simp
simp [OverColor.mk_hom]
/-!

View file

@ -76,7 +76,7 @@ def contrSwapHom : (OverColor.mk (c ∘ q.swap.i.succAbove ∘ q.swap.j.succAbov
@[simp]
lemma contrSwapHom_toEquiv : Hom.toEquiv q.contrSwapHom = Equiv.refl (Fin n) := by
simp [contrSwapHom]
simp [contrSwapHom, OverColor.mk_left]
@[simp]
lemma contrSwapHom_hom_left_apply (x : Fin n) : q.contrSwapHom.hom.left x = x := by