feat: Properties of super commute
This commit is contained in:
parent
f7e669910c
commit
c18b4850e5
3 changed files with 357 additions and 13 deletions
|
@ -96,8 +96,7 @@ lemma superCommuteF_ofStateList_ofState (φs : List 𝓕.States) (φ : 𝓕.Stat
|
|||
simp
|
||||
|
||||
lemma superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) :
|
||||
[anPartF φ, crPartF φ']ₛca =
|
||||
anPartF φ * crPartF φ' -
|
||||
[anPartF φ, crPartF φ']ₛca = anPartF φ * crPartF φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPartF φ' * anPartF φ := by
|
||||
match φ, φ' with
|
||||
| States.inAsymp φ, _ =>
|
||||
|
@ -125,10 +124,8 @@ lemma superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) :
|
|||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
|
||||
lemma superCommuteF_crPartF_anPartF (φ φ' : 𝓕.States) :
|
||||
[crPartF φ, anPartF φ']ₛca =
|
||||
crPartF φ * anPartF φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
anPartF φ' * crPartF φ := by
|
||||
[crPartF φ, anPartF φ']ₛca = crPartF φ * anPartF φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * crPartF φ := by
|
||||
match φ, φ' with
|
||||
| States.outAsymp φ, _ =>
|
||||
simp only [crPartF_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
|
||||
|
@ -154,10 +151,8 @@ lemma superCommuteF_crPartF_anPartF (φ φ' : 𝓕.States) :
|
|||
simp [crAnStatistics, ← ofCrAnList_append]
|
||||
|
||||
lemma superCommuteF_crPartF_crPartF (φ φ' : 𝓕.States) :
|
||||
[crPartF φ, crPartF φ']ₛca =
|
||||
crPartF φ * crPartF φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
crPartF φ' * crPartF φ := by
|
||||
[crPartF φ, crPartF φ']ₛca = crPartF φ * crPartF φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPartF φ' * crPartF φ := by
|
||||
match φ, φ' with
|
||||
| States.outAsymp φ, _ =>
|
||||
simp only [crPartF_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
|
||||
|
@ -183,9 +178,7 @@ lemma superCommuteF_crPartF_crPartF (φ φ' : 𝓕.States) :
|
|||
|
||||
lemma superCommuteF_anPartF_anPartF (φ φ' : 𝓕.States) :
|
||||
[anPartF φ, anPartF φ']ₛca =
|
||||
anPartF φ * anPartF φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
anPartF φ' * anPartF φ := by
|
||||
anPartF φ * anPartF φ' - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * anPartF φ := by
|
||||
match φ, φ' with
|
||||
| States.inAsymp φ, _ =>
|
||||
simp
|
||||
|
@ -362,6 +355,7 @@ lemma superCommuteF_ofCrAnState_ofCrAnState_symm (φ φ' : 𝓕.CrAnStates) :
|
|||
## Splitting the super commutor on lists into sums.
|
||||
|
||||
-/
|
||||
|
||||
lemma superCommuteF_ofCrAnList_ofCrAnList_cons (φ : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
|
||||
[ofCrAnList φs, ofCrAnList (φ :: φs')]ₛca =
|
||||
[ofCrAnList φs, ofCrAnState φ]ₛca * ofCrAnList φs' +
|
||||
|
@ -483,6 +477,7 @@ lemma summerCommute_jacobi_ofCrAnList (φs1 φs2 φs3 : List 𝓕.CrAnStates) :
|
|||
simp only [h1, h2, h3, mul_self, map_one, one_smul, fermionic_exchangeSign_fermionic, neg_smul,
|
||||
neg_sub]
|
||||
abel
|
||||
|
||||
/-!
|
||||
|
||||
## Interaction with grading.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue