refactor: Change of notation for Higgs Target Space
This commit is contained in:
parent
8667120377
commit
c2a5ce612b
1 changed files with 67 additions and 54 deletions
|
@ -120,34 +120,46 @@ lemma higgsRepUnitary_mul (g : gaugeGroup) (φ : higgsVec) :
|
|||
lemma rep_apply (g : gaugeGroup) (φ : higgsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||||
higgsRepUnitary_mul g φ
|
||||
|
||||
|
||||
lemma norm_invariant (g : gaugeGroup) (φ : higgsVec) : ‖rep g φ‖ = ‖φ‖ :=
|
||||
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
|
||||
|
||||
/-- The higgs potential for `higgsVec`, i.e. for constant higgs fields. -/
|
||||
def potential (μSq lambda : ℝ) (φ : higgsVec) : ℝ := - μSq * ‖φ‖ ^ 2 +
|
||||
lambda * ‖φ‖ ^ 4
|
||||
section potentialDefn
|
||||
|
||||
lemma potential_invariant (μSq lambda : ℝ) (φ : higgsVec) (g : gaugeGroup) :
|
||||
potential μSq lambda (rep g φ) = potential μSq lambda φ := by
|
||||
variable (μSq lambda : ℝ)
|
||||
local notation "λ" => lambda
|
||||
|
||||
/-- The higgs potential for `higgsVec`, i.e. for constant higgs fields. -/
|
||||
def potential (φ : higgsVec) : ℝ := - μSq * ‖φ‖ ^ 2 + λ * ‖φ‖ ^ 4
|
||||
|
||||
lemma potential_invariant (φ : higgsVec) (g : gaugeGroup) :
|
||||
potential μSq (λ) (rep g φ) = potential μSq (λ) φ := by
|
||||
simp only [potential, neg_mul]
|
||||
rw [norm_invariant]
|
||||
|
||||
lemma potential_snd_term_nonneg {lambda : ℝ} (hLam : 0 < lambda) (φ : higgsVec) :
|
||||
0 ≤ lambda * ‖φ‖ ^ 4 := by
|
||||
lemma potential_as_quad (φ : higgsVec) :
|
||||
λ * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq (λ) φ) = 0 := by
|
||||
simp [potential]
|
||||
ring
|
||||
|
||||
end potentialDefn
|
||||
section potentialProp
|
||||
|
||||
variable {lambda : ℝ}
|
||||
variable (μSq : ℝ)
|
||||
variable (hLam : 0 < lambda)
|
||||
local notation "λ" => lambda
|
||||
|
||||
lemma potential_snd_term_nonneg (φ : higgsVec) :
|
||||
0 ≤ λ * ‖φ‖ ^ 4 := by
|
||||
rw [mul_nonneg_iff]
|
||||
apply Or.inl
|
||||
simp_all only [ge_iff_le, norm_nonneg, pow_nonneg, and_true]
|
||||
exact le_of_lt hLam
|
||||
|
||||
lemma potential_as_quad (μSq lambda : ℝ) (φ : higgsVec) :
|
||||
lambda * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq lambda φ ) = 0 := by
|
||||
simp [potential]
|
||||
ring
|
||||
|
||||
lemma zero_le_potential_discrim (μSq lambda : ℝ) (φ : higgsVec) (hLam : 0 < lambda) :
|
||||
0 ≤ discrim (lambda) (- μSq ) (- potential μSq lambda φ) := by
|
||||
have h1 := potential_as_quad μSq lambda φ
|
||||
lemma zero_le_potential_discrim (φ : higgsVec) :
|
||||
0 ≤ discrim (λ) (- μSq ) (- potential μSq (λ) φ) := by
|
||||
have h1 := potential_as_quad μSq (λ) φ
|
||||
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
|
||||
rw [h1]
|
||||
exact sq_nonneg (2 * (lambda ) * ‖φ‖ ^ 2 + -μSq)
|
||||
|
@ -155,9 +167,9 @@ lemma zero_le_potential_discrim (μSq lambda : ℝ) (φ : higgsVec) (hLam : 0 <
|
|||
exact ne_of_gt hLam
|
||||
|
||||
|
||||
lemma potential_eq_zero_sol (μSq lambda : ℝ) (hLam : 0 < lambda)(φ : higgsVec)
|
||||
(hV : potential μSq lambda φ = 0) : φ = 0 ∨ ‖φ‖ ^ 2 = μSq / lambda := by
|
||||
have h1 := potential_as_quad μSq lambda φ
|
||||
lemma potential_eq_zero_sol (φ : higgsVec)
|
||||
(hV : potential μSq (λ) φ = 0) : φ = 0 ∨ ‖φ‖ ^ 2 = μSq / λ := by
|
||||
have h1 := potential_as_quad μSq (λ) φ
|
||||
rw [hV] at h1
|
||||
have h2 : ‖φ‖ ^ 2 * (lambda * ‖φ‖ ^ 2 + -μSq ) = 0 := by
|
||||
linear_combination h1
|
||||
|
@ -169,34 +181,34 @@ lemma potential_eq_zero_sol (μSq lambda : ℝ) (hLam : 0 < lambda)(φ : higgsVe
|
|||
ring_nf
|
||||
linear_combination h2
|
||||
|
||||
lemma potential_eq_zero_sol_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda) (hμSq : μSq ≤ 0)
|
||||
(φ : higgsVec) (hV : potential μSq lambda φ = 0) : φ = 0 := by
|
||||
cases' (potential_eq_zero_sol μSq lambda hLam φ hV) with h1 h1
|
||||
lemma potential_eq_zero_sol_of_μSq_nonpos (hμSq : μSq ≤ 0)
|
||||
(φ : higgsVec) (hV : potential μSq (λ) φ = 0) : φ = 0 := by
|
||||
cases' (potential_eq_zero_sol μSq hLam φ hV) with h1 h1
|
||||
exact h1
|
||||
by_cases hμSqZ : μSq = 0
|
||||
simpa [hμSqZ] using h1
|
||||
refine ((?_ : ¬ 0 ≤ μSq / lambda) (?_)).elim
|
||||
refine ((?_ : ¬ 0 ≤ μSq / λ) (?_)).elim
|
||||
· simp_all [div_nonneg_iff]
|
||||
intro h
|
||||
exact lt_imp_lt_of_le_imp_le (fun _ => h) (lt_of_le_of_ne hμSq hμSqZ)
|
||||
· rw [← h1]
|
||||
exact sq_nonneg ‖φ‖
|
||||
|
||||
lemma potential_bounded_below (μSq lambda : ℝ) (hLam : 0 < lambda) (φ : higgsVec) :
|
||||
- μSq ^ 2 / (4 * lambda) ≤ potential μSq lambda φ := by
|
||||
have h1 := zero_le_potential_discrim μSq lambda φ hLam
|
||||
lemma potential_bounded_below (φ : higgsVec) :
|
||||
- μSq ^ 2 / (4 * (λ)) ≤ potential μSq (λ) φ := by
|
||||
have h1 := zero_le_potential_discrim μSq hLam φ
|
||||
simp [discrim] at h1
|
||||
ring_nf at h1
|
||||
rw [← neg_le_iff_add_nonneg'] at h1
|
||||
have h3 : lambda * potential μSq lambda φ * 4 = (4 * lambda) * potential μSq lambda φ := by
|
||||
have h3 : (λ) * potential μSq (λ) φ * 4 = (4 * λ) * potential μSq (λ) φ := by
|
||||
ring
|
||||
rw [h3] at h1
|
||||
have h2 := (div_le_iff' (by simp [hLam] : 0 < 4 * lambda )).mpr h1
|
||||
have h2 := (div_le_iff' (by simp [hLam] : 0 < 4 * λ )).mpr h1
|
||||
ring_nf at h2 ⊢
|
||||
exact h2
|
||||
|
||||
lemma potential_bounded_below_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda)
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : 0 ≤ potential μSq lambda φ := by
|
||||
lemma potential_bounded_below_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : 0 ≤ potential μSq (λ) φ := by
|
||||
simp only [potential, neg_mul, add_zero]
|
||||
refine add_nonneg ?_ (potential_snd_term_nonneg hLam φ)
|
||||
field_simp
|
||||
|
@ -204,53 +216,53 @@ lemma potential_bounded_below_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lam
|
|||
simp_all only [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
||||
|
||||
|
||||
lemma potential_eq_bound_discrim_zero (μSq lambda : ℝ) (hLam : 0 < lambda)(φ : higgsVec)
|
||||
(hV : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
|
||||
discrim (lambda) (- μSq) (- potential μSq lambda φ) = 0 := by
|
||||
lemma potential_eq_bound_discrim_zero (φ : higgsVec)
|
||||
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * λ)) :
|
||||
discrim (λ) (- μSq) (- potential μSq (λ) φ) = 0 := by
|
||||
simp [discrim, hV]
|
||||
field_simp
|
||||
ring
|
||||
|
||||
lemma potential_eq_bound_higgsVec_sq (μSq lambda : ℝ) (hLam : 0 < lambda)(φ : higgsVec)
|
||||
(hV : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
|
||||
‖φ‖ ^ 2 = μSq / (2 * lambda) := by
|
||||
have h1 := potential_as_quad μSq lambda φ
|
||||
lemma potential_eq_bound_higgsVec_sq (φ : higgsVec)
|
||||
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ))) :
|
||||
‖φ‖ ^ 2 = μSq / (2 * λ) := by
|
||||
have h1 := potential_as_quad μSq (λ) φ
|
||||
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _
|
||||
(potential_eq_bound_discrim_zero μSq lambda hLam φ hV)] at h1
|
||||
(potential_eq_bound_discrim_zero μSq hLam φ hV)] at h1
|
||||
rw [h1]
|
||||
field_simp
|
||||
ring_nf
|
||||
simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
exact ne_of_gt hLam
|
||||
|
||||
lemma potential_eq_bound_iff (μSq lambda : ℝ) (hLam : 0 < lambda)(φ : higgsVec) :
|
||||
potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) ↔ ‖φ‖ ^ 2 = μSq / (2 * lambda) := by
|
||||
lemma potential_eq_bound_iff (φ : higgsVec) :
|
||||
potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ)) ↔ ‖φ‖ ^ 2 = μSq / (2 * (λ)) := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
exact potential_eq_bound_higgsVec_sq μSq lambda hLam φ h
|
||||
exact potential_eq_bound_higgsVec_sq μSq hLam φ h
|
||||
· intro h
|
||||
have hv : ‖φ‖ ^ 4 = ‖φ‖ ^ 2 * ‖φ‖ ^ 2 := by
|
||||
ring_nf
|
||||
field_simp [potential, hv, h]
|
||||
ring
|
||||
|
||||
lemma potential_eq_bound_iff_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda)
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : potential μSq lambda φ = 0 ↔ φ = 0 := by
|
||||
lemma potential_eq_bound_iff_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : potential μSq (λ) φ = 0 ↔ φ = 0 := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
exact potential_eq_zero_sol_of_μSq_nonpos hLam hμSq φ h
|
||||
exact potential_eq_zero_sol_of_μSq_nonpos μSq hLam hμSq φ h
|
||||
· intro h
|
||||
simp [potential, h]
|
||||
|
||||
lemma potential_eq_bound_IsMinOn (μSq lambda : ℝ) (hLam : 0 < lambda) (φ : higgsVec)
|
||||
lemma potential_eq_bound_IsMinOn (φ : higgsVec)
|
||||
(hv : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ := by
|
||||
rw [isMinOn_univ_iff]
|
||||
intro x
|
||||
rw [hv]
|
||||
exact potential_bounded_below μSq lambda hLam x
|
||||
exact potential_bounded_below μSq hLam x
|
||||
|
||||
lemma potential_eq_bound_IsMinOn_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda)
|
||||
lemma potential_eq_bound_IsMinOn_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) (hv : potential μSq lambda φ = 0) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ := by
|
||||
rw [isMinOn_univ_iff]
|
||||
|
@ -258,29 +270,29 @@ lemma potential_eq_bound_IsMinOn_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 <
|
|||
rw [hv]
|
||||
exact potential_bounded_below_of_μSq_nonpos hLam hμSq x
|
||||
|
||||
lemma potential_bound_reached_of_μSq_nonneg {μSq lambda : ℝ} (hLam : 0 < lambda) (hμSq : 0 ≤ μSq) :
|
||||
lemma potential_bound_reached_of_μSq_nonneg {μSq : ℝ} (hμSq : 0 ≤ μSq) :
|
||||
∃ (φ : higgsVec), potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) := by
|
||||
use ![√(μSq/(2 * lambda)), 0]
|
||||
refine (potential_eq_bound_iff μSq lambda hLam _).mpr ?_
|
||||
refine (potential_eq_bound_iff μSq hLam _).mpr ?_
|
||||
simp [@PiLp.norm_sq_eq_of_L2, Fin.sum_univ_two]
|
||||
field_simp [mul_pow]
|
||||
|
||||
lemma IsMinOn_potential_iff_of_μSq_nonneg {μSq lambda : ℝ} (hLam : 0 < lambda) (hμSq : 0 ≤ μSq) :
|
||||
lemma IsMinOn_potential_iff_of_μSq_nonneg {μSq : ℝ} (hμSq : 0 ≤ μSq) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ ↔ ‖φ‖ ^ 2 = μSq /(2 * lambda) := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
obtain ⟨φm, hφ⟩ := potential_bound_reached_of_μSq_nonneg hLam hμSq
|
||||
have hm := isMinOn_univ_iff.mp h φm
|
||||
rw [hφ] at hm
|
||||
have h1 := potential_bounded_below μSq lambda hLam φ
|
||||
rw [← potential_eq_bound_iff μSq lambda hLam φ]
|
||||
have h1 := potential_bounded_below μSq hLam φ
|
||||
rw [← potential_eq_bound_iff μSq hLam φ]
|
||||
exact (Real.partialOrder.le_antisymm _ _ h1 hm).symm
|
||||
· intro h
|
||||
rw [← potential_eq_bound_iff μSq lambda hLam φ] at h
|
||||
exact potential_eq_bound_IsMinOn μSq lambda hLam φ h
|
||||
rw [← potential_eq_bound_iff μSq hLam φ] at h
|
||||
exact potential_eq_bound_IsMinOn μSq hLam φ h
|
||||
|
||||
|
||||
lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambda) (hμSq : μSq ≤ 0) :
|
||||
lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq : ℝ} (hμSq : μSq ≤ 0) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ ↔ φ = 0 := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
|
@ -293,6 +305,7 @@ lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq lambda : ℝ} (hLam : 0 < lambd
|
|||
rw [← potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ] at h
|
||||
exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ h
|
||||
|
||||
end potentialProp
|
||||
/-- Given a Higgs vector, a rotation matrix which puts the fst component of the
|
||||
vector to zero, and the snd componenet to a real -/
|
||||
def rotateMatrix (φ : higgsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue