feat: Property of time-order w.r.t. superCommute
This commit is contained in:
parent
a79d0f8fed
commit
c2d89cc093
8 changed files with 781 additions and 8 deletions
|
@ -39,6 +39,66 @@ lemma timeOrder_ofCrAnList (φs : List 𝓕.CrAnStates) :
|
|||
rw [← ofListBasis_eq_ofList]
|
||||
simp only [timeOrder, Basis.constr_basis]
|
||||
|
||||
lemma timeOrder_timeOrder_mid (a b c : 𝓕.CrAnAlgebra) : 𝓣ᶠ(a * b * c) = 𝓣ᶠ(a * 𝓣ᶠ(b) * c) := by
|
||||
let pc (c : 𝓕.CrAnAlgebra) (hc : c ∈ Submodule.span ℂ (Set.range ofCrAnListBasis)) :
|
||||
Prop := 𝓣ᶠ(a * b * c) = 𝓣ᶠ(a * 𝓣ᶠ(b) * c)
|
||||
change pc c (Basis.mem_span _ c)
|
||||
apply Submodule.span_induction
|
||||
· intro x hx
|
||||
obtain ⟨φs, rfl⟩ := hx
|
||||
simp [pc]
|
||||
let pb (b : 𝓕.CrAnAlgebra) (hb : b ∈ Submodule.span ℂ (Set.range ofCrAnListBasis)) :
|
||||
Prop := 𝓣ᶠ(a * b * ofCrAnList φs) = 𝓣ᶠ(a * 𝓣ᶠ(b) * ofCrAnList φs)
|
||||
change pb b (Basis.mem_span _ b)
|
||||
apply Submodule.span_induction
|
||||
· intro x hx
|
||||
obtain ⟨φs', rfl⟩ := hx
|
||||
simp [pb]
|
||||
let pa (a : 𝓕.CrAnAlgebra) (ha : a ∈ Submodule.span ℂ (Set.range ofCrAnListBasis)) :
|
||||
Prop := 𝓣ᶠ(a * ofCrAnList φs' * ofCrAnList φs) = 𝓣ᶠ(a * 𝓣ᶠ(ofCrAnList φs') * ofCrAnList φs)
|
||||
change pa a (Basis.mem_span _ a)
|
||||
apply Submodule.span_induction
|
||||
· intro x hx
|
||||
obtain ⟨φs'', rfl⟩ := hx
|
||||
simp [pa]
|
||||
rw [timeOrder_ofCrAnList]
|
||||
simp only [← ofCrAnList_append, Algebra.mul_smul_comm,
|
||||
Algebra.smul_mul_assoc, map_smul]
|
||||
rw [timeOrder_ofCrAnList, timeOrder_ofCrAnList, smul_smul]
|
||||
congr 1
|
||||
· simp only [crAnTimeOrderSign, crAnTimeOrderList]
|
||||
rw [Wick.koszulSign_of_append_eq_insertionSort, mul_comm]
|
||||
· congr 1
|
||||
simp only [crAnTimeOrderList]
|
||||
rw [insertionSort_append_insertionSort_append]
|
||||
· simp [pa]
|
||||
· intro x y hx hy h1 h2
|
||||
simp_all [pa, add_mul]
|
||||
· intro x hx h
|
||||
simp_all [pa]
|
||||
· simp [pb]
|
||||
· intro x y hx hy h1 h2
|
||||
simp_all [pb, mul_add, add_mul]
|
||||
· intro x hx h
|
||||
simp_all [pb]
|
||||
· simp [pc]
|
||||
· intro x y hx hy h1 h2
|
||||
simp_all [pc, mul_add]
|
||||
· intro x hx h hp
|
||||
simp_all [pc]
|
||||
|
||||
lemma timeOrder_timeOrder_right (a b : 𝓕.CrAnAlgebra) : 𝓣ᶠ(a * b) = 𝓣ᶠ(a * 𝓣ᶠ(b)) := by
|
||||
trans 𝓣ᶠ(a * b * 1)
|
||||
· simp
|
||||
· rw [timeOrder_timeOrder_mid]
|
||||
simp
|
||||
|
||||
lemma timeOrder_timeOrder_left (a b : 𝓕.CrAnAlgebra) : 𝓣ᶠ(a * b) = 𝓣ᶠ(𝓣ᶠ(a) * b) := by
|
||||
trans 𝓣ᶠ(1 * a * b)
|
||||
· simp
|
||||
· rw [timeOrder_timeOrder_mid]
|
||||
simp
|
||||
|
||||
lemma timeOrder_ofStateList (φs : List 𝓕.States) :
|
||||
𝓣ᶠ(ofStateList φs) = timeOrderSign φs • ofStateList (timeOrderList φs) := by
|
||||
conv_lhs =>
|
||||
|
@ -100,6 +160,119 @@ lemma timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel
|
|||
· rw [crAnTimeOrderList_pair_ordered]
|
||||
simp_all
|
||||
|
||||
lemma timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel_right
|
||||
{φ ψ : 𝓕.CrAnStates} (h : ¬ crAnTimeOrderRel φ ψ) (a : 𝓕.CrAnAlgebra) :
|
||||
𝓣ᶠ(a * [ofCrAnState φ, ofCrAnState ψ]ₛca) = 0 := by
|
||||
rw [timeOrder_timeOrder_right,
|
||||
timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel h]
|
||||
simp
|
||||
|
||||
|
||||
lemma timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel_left
|
||||
{φ ψ : 𝓕.CrAnStates} (h : ¬ crAnTimeOrderRel φ ψ) (a : 𝓕.CrAnAlgebra) :
|
||||
𝓣ᶠ([ofCrAnState φ, ofCrAnState ψ]ₛca * a) = 0 := by
|
||||
rw [timeOrder_timeOrder_left,
|
||||
timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel h]
|
||||
simp
|
||||
|
||||
lemma timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel_mid
|
||||
{φ ψ : 𝓕.CrAnStates} (h : ¬ crAnTimeOrderRel φ ψ) (a b : 𝓕.CrAnAlgebra) :
|
||||
𝓣ᶠ(a * [ofCrAnState φ, ofCrAnState ψ]ₛca * b) = 0 := by
|
||||
rw [timeOrder_timeOrder_mid,
|
||||
timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel h]
|
||||
simp
|
||||
|
||||
lemma timeOrder_superCommute_superCommute_ofCrAnState_not_crAnTimeOrderRel
|
||||
{φ1 φ2 : 𝓕.CrAnStates} (h : ¬ crAnTimeOrderRel φ1 φ2) (a : 𝓕.CrAnAlgebra):
|
||||
𝓣ᶠ([a, [ofCrAnState φ1, ofCrAnState φ2]ₛca]ₛca) = 0 := by
|
||||
rw [← bosonicProj_add_fermionicProj a]
|
||||
simp
|
||||
rw [bosonic_superCommute (Submodule.coe_mem (bosonicProj a))]
|
||||
simp
|
||||
rw [timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel_left h]
|
||||
rw [timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel_right h]
|
||||
simp
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton]
|
||||
rcases superCommute_ofCrAnList_ofCrAnList_bosonic_or_fermionic [φ1] [φ2] with h' | h'
|
||||
· rw [superCommute_bonsonic h']
|
||||
simp [ofCrAnList_singleton]
|
||||
rw [timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel_left h]
|
||||
rw [timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel_right h]
|
||||
simp
|
||||
· rw [superCommute_fermionic_fermionic (Submodule.coe_mem (fermionicProj a)) h']
|
||||
simp [ofCrAnList_singleton]
|
||||
rw [timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel_left h]
|
||||
rw [timeOrder_superCommute_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel_right h]
|
||||
simp
|
||||
|
||||
lemma timeOrder_superCommute_ofCrAnState_superCommute_not_crAnTimeOrderRel
|
||||
{φ1 φ2 φ3 : 𝓕.CrAnStates} (h12 : ¬ crAnTimeOrderRel φ1 φ2)
|
||||
(h13 : ¬ crAnTimeOrderRel φ1 φ3) :
|
||||
𝓣ᶠ([ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca) = 0 := by
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_singleton]
|
||||
rw [summerCommute_jacobi_ofCrAnList]
|
||||
simp [ofCrAnList_singleton]
|
||||
right
|
||||
rw [timeOrder_superCommute_superCommute_ofCrAnState_not_crAnTimeOrderRel h12 ]
|
||||
rw [superCommute_ofCrAnState_ofCrAnState_symm φ3]
|
||||
simp
|
||||
rw [timeOrder_superCommute_superCommute_ofCrAnState_not_crAnTimeOrderRel h13]
|
||||
simp
|
||||
|
||||
lemma timeOrder_superCommute_ofCrAnState_superCommute_not_crAnTimeOrderRel'
|
||||
{φ1 φ2 φ3 : 𝓕.CrAnStates} (h12 : ¬ crAnTimeOrderRel φ2 φ1)
|
||||
(h13 : ¬ crAnTimeOrderRel φ3 φ1) :
|
||||
𝓣ᶠ([ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca) = 0 := by
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, ← ofCrAnList_singleton]
|
||||
rw [summerCommute_jacobi_ofCrAnList]
|
||||
simp [ofCrAnList_singleton]
|
||||
right
|
||||
rw [superCommute_ofCrAnState_ofCrAnState_symm φ1]
|
||||
simp
|
||||
rw [timeOrder_superCommute_superCommute_ofCrAnState_not_crAnTimeOrderRel h12 ]
|
||||
simp
|
||||
rw [timeOrder_superCommute_superCommute_ofCrAnState_not_crAnTimeOrderRel h13]
|
||||
simp
|
||||
|
||||
lemma timeOrder_superCommute_ofCrAnState_superCommute_all_not_crAnTimeOrderRel
|
||||
(φ1 φ2 φ3 : 𝓕.CrAnStates) (h : ¬ (
|
||||
crAnTimeOrderRel φ1 φ2 ∧ crAnTimeOrderRel φ1 φ3 ∧
|
||||
crAnTimeOrderRel φ2 φ1 ∧ crAnTimeOrderRel φ2 φ3 ∧
|
||||
crAnTimeOrderRel φ3 φ1 ∧ crAnTimeOrderRel φ3 φ2)) :
|
||||
𝓣ᶠ([ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca) = 0 := by
|
||||
simp at h
|
||||
by_cases h23 : ¬ crAnTimeOrderRel φ2 φ3
|
||||
· simp_all
|
||||
rw [timeOrder_superCommute_superCommute_ofCrAnState_not_crAnTimeOrderRel h23]
|
||||
simp_all
|
||||
by_cases h32 : ¬ crAnTimeOrderRel φ3 φ2
|
||||
· simp_all
|
||||
rw [superCommute_ofCrAnState_ofCrAnState_symm]
|
||||
simp
|
||||
rw [timeOrder_superCommute_superCommute_ofCrAnState_not_crAnTimeOrderRel h32]
|
||||
simp
|
||||
simp_all
|
||||
by_cases h12 : ¬ crAnTimeOrderRel φ1 φ2
|
||||
· have h13 : ¬ crAnTimeOrderRel φ1 φ3 := by
|
||||
intro h13
|
||||
apply h12
|
||||
exact IsTrans.trans φ1 φ3 φ2 h13 h32
|
||||
rw [timeOrder_superCommute_ofCrAnState_superCommute_not_crAnTimeOrderRel h12 h13]
|
||||
simp_all
|
||||
have h13 : crAnTimeOrderRel φ1 φ3 := IsTrans.trans φ1 φ2 φ3 h12 h23
|
||||
simp_all
|
||||
by_cases h21 : ¬ crAnTimeOrderRel φ2 φ1
|
||||
· simp_all
|
||||
have h31 : ¬ crAnTimeOrderRel φ3 φ1 := by
|
||||
intro h31
|
||||
apply h21
|
||||
exact IsTrans.trans φ2 φ3 φ1 h23 h31
|
||||
rw [timeOrder_superCommute_ofCrAnState_superCommute_not_crAnTimeOrderRel' h21 h31]
|
||||
simp_all
|
||||
refine False.elim (h ?_)
|
||||
exact IsTrans.trans φ3 φ2 φ1 h32 h21
|
||||
|
||||
|
||||
lemma timeOrder_superCommute_ofCrAnState_ofCrAnState_eq_time
|
||||
{φ ψ : 𝓕.CrAnStates} (h1 : crAnTimeOrderRel φ ψ) (h2 : crAnTimeOrderRel ψ φ) :
|
||||
𝓣ᶠ([ofCrAnState φ, ofCrAnState ψ]ₛca) = [ofCrAnState φ, ofCrAnState ψ]ₛca := by
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue