refactor: rename timeOrder for CrAnAlgebra
This commit is contained in:
parent
f5e7bbad59
commit
c53299d40a
4 changed files with 95 additions and 95 deletions
|
@ -19,7 +19,7 @@ open FieldStatistic
|
|||
namespace FieldOpAlgebra
|
||||
variable {𝓕 : FieldSpecification}
|
||||
|
||||
lemma ι_timeOrder_superCommuteF_superCommuteF_eq_time_ofCrAnList {φ1 φ2 φ3 : 𝓕.CrAnStates}
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnList {φ1 φ2 φ3 : 𝓕.CrAnStates}
|
||||
(φs1 φs2 : List 𝓕.CrAnStates) (h :
|
||||
crAnTimeOrderRel φ1 φ2 ∧ crAnTimeOrderRel φ1 φ3 ∧
|
||||
crAnTimeOrderRel φ2 φ1 ∧ crAnTimeOrderRel φ2 φ3 ∧
|
||||
|
@ -38,7 +38,7 @@ lemma ι_timeOrder_superCommuteF_superCommuteF_eq_time_ofCrAnList {φ1 φ2 φ3 :
|
|||
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ1, φ2, φ3]) * ι (ofCrAnList l2)) := by
|
||||
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ1, φ2, φ3] φs2
|
||||
(by simp_all)
|
||||
rw [timeOrder_ofCrAnList, show φs1 ++ φ1 :: φ2 :: φ3 :: φs2 = φs1 ++ [φ1, φ2, φ3] ++ φs2
|
||||
rw [timeOrderF_ofCrAnList, show φs1 ++ φ1 :: φ2 :: φ3 :: φs2 = φs1 ++ [φ1, φ2, φ3] ++ φs2
|
||||
by simp, crAnTimeOrderList, h1]
|
||||
simp only [List.append_assoc, List.singleton_append, decide_not,
|
||||
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
|
||||
|
@ -47,7 +47,7 @@ lemma ι_timeOrder_superCommuteF_superCommuteF_eq_time_ofCrAnList {φ1 φ2 φ3 :
|
|||
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ1, φ3, φ2]) * ι (ofCrAnList l2)) := by
|
||||
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ1, φ3, φ2] φs2
|
||||
(by simp_all)
|
||||
rw [timeOrder_ofCrAnList, show φs1 ++ φ1 :: φ3 :: φ2 :: φs2 = φs1 ++ [φ1, φ3, φ2] ++ φs2
|
||||
rw [timeOrderF_ofCrAnList, show φs1 ++ φ1 :: φ3 :: φ2 :: φs2 = φs1 ++ [φ1, φ3, φ2] ++ φs2
|
||||
by simp, crAnTimeOrderList, h1]
|
||||
simp only [List.singleton_append, decide_not,
|
||||
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
|
||||
|
@ -72,7 +72,7 @@ lemma ι_timeOrder_superCommuteF_superCommuteF_eq_time_ofCrAnList {φ1 φ2 φ3 :
|
|||
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ2, φ3, φ1]) * ι (ofCrAnList l2)) := by
|
||||
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ2, φ3, φ1] φs2
|
||||
(by simp_all)
|
||||
rw [timeOrder_ofCrAnList, show φs1 ++ φ2 :: φ3 :: φ1 :: φs2 = φs1 ++ [φ2, φ3, φ1] ++ φs2
|
||||
rw [timeOrderF_ofCrAnList, show φs1 ++ φ2 :: φ3 :: φ1 :: φs2 = φs1 ++ [φ2, φ3, φ1] ++ φs2
|
||||
by simp, crAnTimeOrderList, h1]
|
||||
simp only [List.singleton_append, decide_not,
|
||||
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
|
||||
|
@ -90,7 +90,7 @@ lemma ι_timeOrder_superCommuteF_superCommuteF_eq_time_ofCrAnList {φ1 φ2 φ3 :
|
|||
• (ι (ofCrAnList l1) * ι (ofCrAnList [φ3, φ2, φ1]) * ι (ofCrAnList l2)) := by
|
||||
have h1 := insertionSort_of_eq_list 𝓕.crAnTimeOrderRel φ1 φs1 [φ3, φ2, φ1] φs2
|
||||
(by simp_all)
|
||||
rw [timeOrder_ofCrAnList, show φs1 ++ φ3 :: φ2 :: φ1 :: φs2 = φs1 ++ [φ3, φ2, φ1] ++ φs2
|
||||
rw [timeOrderF_ofCrAnList, show φs1 ++ φ3 :: φ2 :: φ1 :: φs2 = φs1 ++ [φ3, φ2, φ1] ++ φs2
|
||||
by simp, crAnTimeOrderList, h1]
|
||||
simp only [List.singleton_append, decide_not,
|
||||
Bool.decide_and, ofCrAnList_append, map_smul, map_mul, l1, l2, mul_assoc]
|
||||
|
@ -139,7 +139,7 @@ lemma ι_timeOrder_superCommuteF_superCommuteF_eq_time_ofCrAnList {φ1 φ2 φ3 :
|
|||
map_smul, smul_sub]
|
||||
simp_all
|
||||
|
||||
lemma ι_timeOrder_superCommuteF_superCommuteF_ofCrAnList {φ1 φ2 φ3 : 𝓕.CrAnStates}
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnList {φ1 φ2 φ3 : 𝓕.CrAnStates}
|
||||
(φs1 φs2 : List 𝓕.CrAnStates) :
|
||||
ι 𝓣ᶠ(ofCrAnList φs1 * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * ofCrAnList φs2)
|
||||
= 0 := by
|
||||
|
@ -147,13 +147,13 @@ lemma ι_timeOrder_superCommuteF_superCommuteF_ofCrAnList {φ1 φ2 φ3 : 𝓕.Cr
|
|||
crAnTimeOrderRel φ1 φ2 ∧ crAnTimeOrderRel φ1 φ3 ∧
|
||||
crAnTimeOrderRel φ2 φ1 ∧ crAnTimeOrderRel φ2 φ3 ∧
|
||||
crAnTimeOrderRel φ3 φ1 ∧ crAnTimeOrderRel φ3 φ2
|
||||
· exact ι_timeOrder_superCommuteF_superCommuteF_eq_time_ofCrAnList φs1 φs2 h
|
||||
· rw [timeOrder_timeOrder_mid]
|
||||
rw [timeOrder_superCommuteF_ofCrAnState_superCommuteF_all_not_crAnTimeOrderRel _ _ _ h]
|
||||
· exact ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnList φs1 φs2 h
|
||||
· rw [timeOrderF_timeOrderF_mid]
|
||||
rw [timeOrderF_superCommuteF_ofCrAnState_superCommuteF_all_not_crAnTimeOrderRel _ _ _ h]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma ι_timeOrder_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnStates} (a b : 𝓕.CrAnAlgebra) :
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnStates} (a b : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓣ᶠ(a * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * b) = 0 := by
|
||||
let pb (b : 𝓕.CrAnAlgebra) (hc : b ∈ Submodule.span ℂ (Set.range ofCrAnListBasis)) :
|
||||
Prop := ι 𝓣ᶠ(a * [ofCrAnState φ1, [ofCrAnState φ2, ofCrAnState φ3]ₛca]ₛca * b) = 0
|
||||
|
@ -169,7 +169,7 @@ lemma ι_timeOrder_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnStates} (
|
|||
· intro x hx
|
||||
obtain ⟨φs', rfl⟩ := hx
|
||||
simp only [ofListBasis_eq_ofList, pa]
|
||||
exact ι_timeOrder_superCommuteF_superCommuteF_ofCrAnList φs' φs
|
||||
exact ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnList φs' φs
|
||||
· simp [pa]
|
||||
· intro x y hx hy hpx hpy
|
||||
simp_all [pa,mul_add, add_mul]
|
||||
|
@ -181,7 +181,7 @@ lemma ι_timeOrder_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnStates} (
|
|||
· intro x hx hpx
|
||||
simp_all [pb, hpx]
|
||||
|
||||
lemma ι_timeOrder_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
|
||||
lemma ι_timeOrderF_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
|
||||
(hφψ : crAnTimeOrderRel φ ψ) (hψφ : crAnTimeOrderRel ψ φ) (a b : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓣ᶠ(a * [ofCrAnState φ, ofCrAnState ψ]ₛca * b) =
|
||||
ι ([ofCrAnState φ, ofCrAnState ψ]ₛca * 𝓣ᶠ(a * b)) := by
|
||||
|
@ -204,7 +204,7 @@ lemma ι_timeOrder_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
|
|||
conv_lhs =>
|
||||
rw [← ofCrAnList_singleton, ← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList]
|
||||
simp [mul_sub, sub_mul, ← ofCrAnList_append]
|
||||
rw [timeOrder_ofCrAnList, timeOrder_ofCrAnList]
|
||||
rw [timeOrderF_ofCrAnList, timeOrderF_ofCrAnList]
|
||||
have h1 : crAnTimeOrderSign (φs' ++ φ :: ψ :: φs) =
|
||||
crAnTimeOrderSign (φs' ++ ψ :: φ :: φs) := by
|
||||
trans crAnTimeOrderSign (φs' ++ [φ, ψ] ++ φs)
|
||||
|
@ -260,7 +260,7 @@ lemma ι_timeOrder_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
|
|||
· rw [ι_superCommuteF_of_diff_statistic hq]
|
||||
simp
|
||||
· rw [crAnTimeOrderSign, Wick.koszulSign_eq_rel_eq_stat _ _, ← crAnTimeOrderSign]
|
||||
rw [timeOrder_ofCrAnList]
|
||||
rw [timeOrderF_ofCrAnList]
|
||||
simp only [map_smul, Algebra.mul_smul_comm]
|
||||
simp only [List.nil_append]
|
||||
exact hψφ
|
||||
|
@ -277,30 +277,30 @@ lemma ι_timeOrder_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
|
|||
· intro x hx hpx
|
||||
simp_all [pb, hpx]
|
||||
|
||||
lemma ι_timeOrder_superCommuteF_neq_time {φ ψ : 𝓕.CrAnStates}
|
||||
lemma ι_timeOrderF_superCommuteF_neq_time {φ ψ : 𝓕.CrAnStates}
|
||||
(hφψ : ¬ (crAnTimeOrderRel φ ψ ∧ crAnTimeOrderRel ψ φ)) (a b : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓣ᶠ(a * [ofCrAnState φ, ofCrAnState ψ]ₛca * b) = 0 := by
|
||||
rw [timeOrder_timeOrder_mid]
|
||||
rw [timeOrderF_timeOrderF_mid]
|
||||
have hφψ : ¬ (crAnTimeOrderRel φ ψ) ∨ ¬ (crAnTimeOrderRel ψ φ) := by
|
||||
exact Decidable.not_and_iff_or_not.mp hφψ
|
||||
rcases hφψ with hφψ | hφψ
|
||||
· rw [timeOrder_superCommuteF_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel]
|
||||
· rw [timeOrderF_superCommuteF_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel]
|
||||
simp_all only [false_and, not_false_eq_true, false_or, mul_zero, zero_mul, map_zero]
|
||||
simp_all
|
||||
· rw [superCommuteF_ofCrAnState_ofCrAnState_symm]
|
||||
simp only [instCommGroup.eq_1, neg_smul, map_neg, map_smul, mul_neg, Algebra.mul_smul_comm,
|
||||
neg_mul, Algebra.smul_mul_assoc, neg_eq_zero, smul_eq_zero]
|
||||
rw [timeOrder_superCommuteF_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel]
|
||||
rw [timeOrderF_superCommuteF_ofCrAnState_ofCrAnState_not_crAnTimeOrderRel]
|
||||
simp only [mul_zero, zero_mul, map_zero, or_true]
|
||||
simp_all
|
||||
|
||||
/-!
|
||||
|
||||
## Defining normal order for `FiedOpAlgebra`.
|
||||
## Defining time order for `FiedOpAlgebra`.
|
||||
|
||||
-/
|
||||
|
||||
lemma ι_timeOrder_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
|
||||
lemma ι_timeOrderF_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
|
||||
(h : a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι 𝓣ᶠ(a) = 0 := by
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at h
|
||||
let p {k : Set 𝓕.CrAnAlgebra} (a : CrAnAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) := ι 𝓣ᶠ(a) = 0
|
||||
|
@ -314,11 +314,11 @@ lemma ι_timeOrder_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
|
|||
match hc with
|
||||
| Or.inl hc =>
|
||||
obtain ⟨φa, φa', hφa, hφa', rfl⟩ := hc
|
||||
simp only [ι_timeOrder_superCommuteF_superCommuteF]
|
||||
simp only [ι_timeOrderF_superCommuteF_superCommuteF]
|
||||
| Or.inr (Or.inl hc) =>
|
||||
obtain ⟨φa, hφa, φb, hφb, rfl⟩ := hc
|
||||
by_cases heqt : (crAnTimeOrderRel φa φb ∧ crAnTimeOrderRel φb φa)
|
||||
· rw [ι_timeOrder_superCommuteF_eq_time]
|
||||
· rw [ι_timeOrderF_superCommuteF_eq_time]
|
||||
simp only [map_mul]
|
||||
rw [ι_superCommuteF_of_create_create]
|
||||
simp only [zero_mul]
|
||||
|
@ -326,11 +326,11 @@ lemma ι_timeOrder_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
|
|||
· exact hφb
|
||||
· exact heqt.1
|
||||
· exact heqt.2
|
||||
· rw [ι_timeOrder_superCommuteF_neq_time heqt]
|
||||
· rw [ι_timeOrderF_superCommuteF_neq_time heqt]
|
||||
| Or.inr (Or.inr (Or.inl hc)) =>
|
||||
obtain ⟨φa, hφa, φb, hφb, rfl⟩ := hc
|
||||
by_cases heqt : (crAnTimeOrderRel φa φb ∧ crAnTimeOrderRel φb φa)
|
||||
· rw [ι_timeOrder_superCommuteF_eq_time]
|
||||
· rw [ι_timeOrderF_superCommuteF_eq_time]
|
||||
simp only [map_mul]
|
||||
rw [ι_superCommuteF_of_annihilate_annihilate]
|
||||
simp only [zero_mul]
|
||||
|
@ -338,18 +338,18 @@ lemma ι_timeOrder_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
|
|||
· exact hφb
|
||||
· exact heqt.1
|
||||
· exact heqt.2
|
||||
· rw [ι_timeOrder_superCommuteF_neq_time heqt]
|
||||
· rw [ι_timeOrderF_superCommuteF_neq_time heqt]
|
||||
| Or.inr (Or.inr (Or.inr hc)) =>
|
||||
obtain ⟨φa, φb, hdiff, rfl⟩ := hc
|
||||
by_cases heqt : (crAnTimeOrderRel φa φb ∧ crAnTimeOrderRel φb φa)
|
||||
· rw [ι_timeOrder_superCommuteF_eq_time]
|
||||
· rw [ι_timeOrderF_superCommuteF_eq_time]
|
||||
simp only [map_mul]
|
||||
rw [ι_superCommuteF_of_diff_statistic]
|
||||
simp only [zero_mul]
|
||||
· exact hdiff
|
||||
· exact heqt.1
|
||||
· exact heqt.2
|
||||
· rw [ι_timeOrder_superCommuteF_neq_time heqt]
|
||||
· rw [ι_timeOrderF_superCommuteF_neq_time heqt]
|
||||
· simp [p]
|
||||
· intro x y hx hy
|
||||
simp only [map_add, p]
|
||||
|
@ -358,16 +358,16 @@ lemma ι_timeOrder_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
|
|||
· intro x hx
|
||||
simp [p]
|
||||
|
||||
lemma ι_timeOrder_eq_of_equiv (a b : 𝓕.CrAnAlgebra) (h : a ≈ b) :
|
||||
lemma ι_timeOrderF_eq_of_equiv (a b : 𝓕.CrAnAlgebra) (h : a ≈ b) :
|
||||
ι 𝓣ᶠ(a) = ι 𝓣ᶠ(b) := by
|
||||
rw [equiv_iff_sub_mem_ideal] at h
|
||||
rw [LinearMap.sub_mem_ker_iff.mp]
|
||||
simp only [LinearMap.mem_ker, ← map_sub]
|
||||
exact ι_timeOrder_zero_of_mem_ideal (a - b) h
|
||||
exact ι_timeOrderF_zero_of_mem_ideal (a - b) h
|
||||
|
||||
/-- Time ordering on `FieldOpAlgebra`. -/
|
||||
noncomputable def timeOrder : FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where
|
||||
toFun := Quotient.lift (ι.toLinearMap ∘ₗ CrAnAlgebra.timeOrder) ι_timeOrder_eq_of_equiv
|
||||
toFun := Quotient.lift (ι.toLinearMap ∘ₗ timeOrderF) ι_timeOrderF_eq_of_equiv
|
||||
map_add' x y := by
|
||||
obtain ⟨x, hx⟩ := ι_surjective x
|
||||
obtain ⟨y, hy⟩ := ι_surjective y
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue