feat: Add statement for prod contr on right

This commit is contained in:
jstoobysmith 2024-10-28 06:08:25 +00:00
parent 511fe92cef
commit c53b3daeb6

View file

@ -196,7 +196,7 @@ lemma contrMap_prod :
LinearMap.coe_toAddHom, equivToIso_homToEquiv]
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫ S.FDiscrete.map (Discrete.eqToHom _)).hom _
rw [← S.FDiscrete.map_comp]
simp
simp only [eqToHom_trans]
/- a = q.i.succAbove q.j, d = q.i, b = (finSumFinEquiv.symm (leftContrEquivSuccSucc.symm (q.leftContr.i.succAbove q.leftContr.j))
h : c (q.i.succAbove q.j) = S.τ (c q.i) -/
have h1 {a d : Fin n.succ.succ} {b : Fin (n + 1 + 1) ⊕ Fin n1}
@ -215,9 +215,14 @@ lemma contrMap_prod :
conv_lhs => erw [lift.map_tprod]
apply congrArg
funext k
simp [lift.discreteFunctorMapEqIso]
repeat erw [ModuleCat.id_apply]
simp
simp only [ Functor.id_obj, mk_hom, Function.comp_apply,
equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, instMonoidalCategoryStruct_tensorObj_hom,
LinearEquiv.ofLinear_apply, Equiv.toFun_as_coe, equivToIso_mkIso_hom, Equiv.refl_symm,
Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv]
conv_rhs => repeat erw [ModuleCat.id_apply]
simp only [Nat.succ_eq_add_one, AddHom.toFun_eq_coe, LinearMap.coe_toAddHom,
LinearEquiv.coe_coe]
change _ = (S.FDiscrete.map (eqToHom _)).hom
((lift.discreteSumEquiv S.FDiscrete
(finSumFinEquiv.symm
@ -229,12 +234,43 @@ lemma contrMap_prod :
(leftContrEquivSuccSucc.symm
(q.leftContr.i.succAbove
(q.leftContr.j.succAbove k))))))
sorry
/- l = k, l' = (finSumFinEquiv.symm (leftContrEquivSuccSucc.symm (q.leftContr.i.succAbove (q.leftContr.j.succAbove k)))),
-/
have h1 (l : (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).left ⊕ (OverColor.mk c1).left)
(l' : Fin n.succ.succ ⊕ Fin n1)
(h : Sum.elim c c1 l' = Sum.elim (c ∘ q.i.succAbove ∘ q.j.succAbove) c1 l)
(h' : l' = (Sum.map (q.i.succAbove ∘ q.j.succAbove) id l))
: (lift.discreteSumEquiv S.FDiscrete l)
(HepLean.PiTensorProduct.elimPureTensor (fun k => p (q.i.succAbove (q.j.succAbove k))) q' l) =
(S.FDiscrete.map (eqToHom (by simp [h] ))).hom
((lift.discreteSumEquiv S.FDiscrete l')
(HepLean.PiTensorProduct.elimPureTensor p q' l')) := by
subst h'
match l with
| Sum.inl l =>
simp only [Nat.succ_eq_add_one, instMonoidalCategoryStruct_tensorObj_hom, mk_hom,
Sum.elim_inl, Function.comp_apply, Functor.id_obj, Sum.map_inl, eqToHom_refl,
Discrete.functor_map_id, Action.id_hom, ModuleCat.id_apply]
rfl
| Sum.inr l =>
simp only [Nat.succ_eq_add_one, instMonoidalCategoryStruct_tensorObj_hom, mk_hom,
Sum.elim_inr, Functor.id_obj, Function.comp_apply, Sum.map_inr, id_eq, eqToHom_refl,
Discrete.functor_map_id, Action.id_hom, ModuleCat.id_apply]
rfl
refine h1 _ _ ?_ ?_
· simpa using Discrete.eqToIso.proof_1
(Hom.toEquiv_comp_inv_apply (mkIso (leftContr_map_eq q)).hom k)
· obtain ⟨k, hk⟩ := finSumFinEquiv.surjective k
subst hk
erw [Equiv.symm_apply_apply]
match k with
| Sum.inl k =>
simp only [Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContr, finSumFinEquiv_apply_left,
Sum.map_inl, Function.comp_apply]
rw [succAbove_leftContrJ_leftContrI_castAdd]
simp only [Nat.succ_eq_add_one, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd]
| Sum.inr k =>
simp [finSumFinEquiv_apply_left, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl, leftContr]
rw [succAbove_leftContrJ_leftContrI_natAdd]
simp only [Nat.succ_eq_add_one, Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_natAdd]
/-!
@ -242,6 +278,84 @@ lemma contrMap_prod :
-/
def rightContrI (n1 : ): Fin ((n1 + n).succ.succ) := Fin.natAdd n1 q.i
def rightContrJ (n1 : ) : Fin ((n1 + n).succ) := Fin.natAdd n1 q.j
@[simp]
lemma rightContrJ_succAbove_rightContrI : (q.rightContrI n1).succAbove (q.rightContrJ n1)
= (Fin.natAdd n1 (q.i.succAbove q.j)) := by
rw [rightContrI, rightContrJ]
rw [Fin.ext_iff]
simp only [Fin.succAbove, Nat.succ_eq_add_one, Fin.coe_natAdd]
split_ifs
<;> rename_i h1 h2
<;> rw [Fin.lt_def] at h1 h2
· simp only [Fin.coe_castSucc, Fin.coe_natAdd]
· simp_all only [Fin.coe_castSucc, Fin.coe_natAdd, add_lt_add_iff_left, not_true_eq_false]
· simp_all only [Fin.coe_castSucc, Fin.coe_natAdd, add_lt_add_iff_left, not_lt, Fin.val_succ,
add_right_eq_self, one_ne_zero]
omega
· simp only [Fin.val_succ, Fin.coe_natAdd]
omega
lemma succAbove_rightContrJ_rightContrI_castAdd (x : Fin n1) :
(q.rightContrI n1).succAbove ((q.rightContrJ n1).succAbove (Fin.castAdd n x)) =
(Fin.castAdd n.succ.succ x) := by
rw [Fin.ext_iff]
simp [rightContrI, rightContrJ, Fin.succAbove]
split_ifs <;> rename_i h1 h2
<;> rw [Fin.lt_def] at h1 h2
<;> simp_all
<;> omega
lemma succAbove_rightContrJ_rightContrI_natAdd (x : Fin n) :
(q.rightContrI n1).succAbove ((q.rightContrJ n1).succAbove (Fin.natAdd n1 x)) =
(Fin.natAdd n1 ((q.i.succAbove) (q.j.succAbove x))) := by
rw [Fin.ext_iff]
simp [rightContrI, rightContrJ, Fin.succAbove]
split_ifs <;> rename_i h1 h2 h3 h4
<;> rw [Fin.lt_def] at h1 h2 h3 h4
<;> simp_all
<;> omega
def rightContr : ContrPair ((Sum.elim c1 c ∘ (@finSumFinEquiv n1 n.succ.succ).symm.toFun)) where
i := q.rightContrI n1
j := q.rightContrJ n1
h := by
simp only [Nat.add_eq, Nat.succ_eq_add_one, Equiv.toFun_as_coe,
rightContrJ_succAbove_rightContrI, Function.comp_apply, finSumFinEquiv_symm_apply_natAdd,
Sum.elim_inr]
simpa [rightContrI] using q.h
lemma rightContr_map_eq : ((Sum.elim c1 (OverColor.mk c).hom ∘ finSumFinEquiv.symm.toFun)) ∘
(q.rightContr (c1 := c1)).i.succAbove ∘ (q.rightContr (c1 := c1)).j.succAbove =
Sum.elim (OverColor.mk c1).hom (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).hom ∘
⇑finSumFinEquiv.symm := by
funext x
simp only [Nat.succ_eq_add_one, Functor.id_obj, mk_hom, Equiv.toFun_as_coe, Function.comp_apply,
Functor.const_obj_obj]
obtain ⟨k, hk⟩ := finSumFinEquiv.surjective x
subst hk
match k with
| Sum.inl k =>
simp only [finSumFinEquiv_apply_left, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
erw [succAbove_rightContrJ_rightContrI_castAdd]
simp only [Nat.succ_eq_add_one, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
| Sum.inr k =>
simp only [finSumFinEquiv_apply_right, finSumFinEquiv_symm_apply_natAdd, Sum.elim_inr]
erw [succAbove_rightContrJ_rightContrI_natAdd]
simp only [finSumFinEquiv_symm_apply_natAdd, Sum.elim_inr, Function.comp_apply]
lemma prod_contr :
(S.F.obj (OverColor.mk c1) ◁ q.contrMap) ≫ (S.F.μ ((OverColor.mk c1)) _) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
(S.F.μ ((OverColor.mk c1)) ((OverColor.mk c))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
q.rightContr.contrMap ≫ S.F.map (OverColor.mkIso (q.rightContr_map_eq)).hom:= by
sorry
end ContrPair
theorem contr_prod {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ}