feat: Add defn of bispinors
This commit is contained in:
parent
9ec5746451
commit
c565e7ea1c
3 changed files with 56 additions and 8 deletions
|
@ -67,7 +67,7 @@ lemma metricRaw_comm_star (M : SL(2,ℂ)) : metricRaw * M.1.map star = ((M.1)⁻
|
|||
rw [eta_fin_two (!![M.1 0 0, M.1 0 1; M.1 1 0, M.1 1 1].map star)]
|
||||
simp
|
||||
|
||||
/-- The metric `εₐₐ` as an element of `(leftHanded ⊗ leftHanded).V`. -/
|
||||
/-- The metric `εᵃᵃ` as an element of `(leftHanded ⊗ leftHanded).V`. -/
|
||||
def leftMetricVal : (leftHanded ⊗ leftHanded).V :=
|
||||
leftLeftToMatrix.symm (- metricRaw)
|
||||
|
||||
|
@ -80,7 +80,7 @@ lemma leftMetricVal_expand_tmul : leftMetricVal =
|
|||
Finset.sum_neg_distrib, Fin.sum_univ_two, Fin.isValue, cons_val_zero, cons_val_one, head_cons,
|
||||
neg_add_rev, one_smul, zero_smul, neg_zero, add_zero, head_fin_const, neg_neg, zero_add]
|
||||
|
||||
/-- The metric `εₐₐ` as a morphism `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ leftHanded ⊗ leftHanded`,
|
||||
/-- The metric `εᵃᵃ` as a morphism `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ leftHanded ⊗ leftHanded`,
|
||||
making manifest its invariance under the action of `SL(2,ℂ)`. -/
|
||||
def leftMetric : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ leftHanded ⊗ leftHanded where
|
||||
hom := {
|
||||
|
@ -114,7 +114,7 @@ lemma leftMetric_apply_one : leftMetric.hom (1 : ℂ) = leftMetricVal := by
|
|||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
leftMetric, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||||
|
||||
/-- The metric `εᵃᵃ` as an element of `(altLeftHanded ⊗ altLeftHanded).V`. -/
|
||||
/-- The metric `εₐₐ` as an element of `(altLeftHanded ⊗ altLeftHanded).V`. -/
|
||||
def altLeftMetricVal : (altLeftHanded ⊗ altLeftHanded).V :=
|
||||
altLeftaltLeftToMatrix.symm metricRaw
|
||||
|
||||
|
@ -128,7 +128,7 @@ lemma altLeftMetricVal_expand_tmul : altLeftMetricVal =
|
|||
neg_add_rev, one_smul, zero_smul, neg_zero, add_zero, head_fin_const, neg_neg, zero_add]
|
||||
rfl
|
||||
|
||||
/-- The metric `εᵃᵃ` as a morphism `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altLeftHanded ⊗ altLeftHanded`,
|
||||
/-- The metric `εₐₐ` as a morphism `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altLeftHanded ⊗ altLeftHanded`,
|
||||
making manifest its invariance under the action of `SL(2,ℂ)`. -/
|
||||
def altLeftMetric : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altLeftHanded ⊗ altLeftHanded where
|
||||
hom := {
|
||||
|
@ -162,7 +162,7 @@ lemma altLeftMetric_apply_one : altLeftMetric.hom (1 : ℂ) = altLeftMetricVal :
|
|||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
altLeftMetric, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||||
|
||||
/-- The metric `ε_{dot a}_{dot a}` as an element of `(rightHanded ⊗ rightHanded).V`. -/
|
||||
/-- The metric `ε^{dot a}^{dot a}` as an element of `(rightHanded ⊗ rightHanded).V`. -/
|
||||
def rightMetricVal : (rightHanded ⊗ rightHanded).V :=
|
||||
rightRightToMatrix.symm (- metricRaw)
|
||||
|
||||
|
@ -175,7 +175,7 @@ lemma rightMetricVal_expand_tmul : rightMetricVal =
|
|||
Finset.sum_neg_distrib, Fin.sum_univ_two, Fin.isValue, cons_val_zero, cons_val_one, head_cons,
|
||||
neg_add_rev, one_smul, zero_smul, neg_zero, add_zero, head_fin_const, neg_neg, zero_add]
|
||||
|
||||
/-- The metric `ε_{dot a}_{dot a}` as a morphism `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ rightHanded ⊗ rightHanded`,
|
||||
/-- The metric `ε^{dot a}^{dot a}` as a morphism `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ rightHanded ⊗ rightHanded`,
|
||||
making manifest its invariance under the action of `SL(2,ℂ)`. -/
|
||||
def rightMetric : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ rightHanded ⊗ rightHanded where
|
||||
hom := {
|
||||
|
@ -217,7 +217,7 @@ lemma rightMetric_apply_one : rightMetric.hom (1 : ℂ) = rightMetricVal := by
|
|||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
rightMetric, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||||
|
||||
/-- The metric `ε^{dot a}^{dot a}` as an element of `(altRightHanded ⊗ altRightHanded).V`. -/
|
||||
/-- The metric `ε_{dot a}_{dot a}` as an element of `(altRightHanded ⊗ altRightHanded).V`. -/
|
||||
def altRightMetricVal : (altRightHanded ⊗ altRightHanded).V :=
|
||||
altRightAltRightToMatrix.symm (metricRaw)
|
||||
|
||||
|
@ -231,7 +231,7 @@ lemma altRightMetricVal_expand_tmul : altRightMetricVal =
|
|||
neg_add_rev, one_smul, zero_smul, neg_zero, add_zero, head_fin_const, neg_neg, zero_add]
|
||||
rfl
|
||||
|
||||
/-- The metric `ε^{dot a}^{dot a}` as a morphism
|
||||
/-- The metric `ε_{dot a}_{dot a}` as a morphism
|
||||
`𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altRightHanded ⊗ altRightHanded`,
|
||||
making manifest its invariance under the action of `SL(2,ℂ)`. -/
|
||||
def altRightMetric : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altRightHanded ⊗ altRightHanded where
|
||||
|
|
47
HepLean/Tensors/ComplexLorentz/Bispinors/Basic.lean
Normal file
47
HepLean/Tensors/ComplexLorentz/Bispinors/Basic.lean
Normal file
|
@ -0,0 +1,47 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.Elab
|
||||
import HepLean.Tensors.ComplexLorentz.Basic
|
||||
import Mathlib.LinearAlgebra.TensorProduct.Basis
|
||||
import HepLean.Tensors.Tree.NodeIdentities.Basic
|
||||
import HepLean.Tensors.Tree.NodeIdentities.PermProd
|
||||
import HepLean.Tensors.Tree.NodeIdentities.PermContr
|
||||
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
|
||||
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
|
||||
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
|
||||
/-!
|
||||
|
||||
## Bispinors
|
||||
|
||||
-/
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open TensorTree
|
||||
open OverColor.Discrete
|
||||
open Fermion
|
||||
noncomputable section
|
||||
namespace Lorentz
|
||||
namespace complexContr
|
||||
|
||||
/-- A bispinor `pᵃᵃ` created from a lorentz vector `p^μ`. -/
|
||||
def bispinorUp (p : complexContr) :=
|
||||
{p | μ ⊗ (Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β)}ᵀ.tensor
|
||||
|
||||
/-- A bispinor `pₐₐ` created from a lorentz vector `p^μ`. -/
|
||||
def bispinorDown (p : complexContr) :=
|
||||
{Fermion.altRightMetric | β β' ⊗ Fermion.altLeftMetric | α α' ⊗
|
||||
(complexContr.bispinorUp p) | α β}ᵀ.tensor
|
||||
|
||||
end complexContr
|
||||
end Lorentz
|
||||
end
|
Loading…
Add table
Add a link
Reference in a new issue