refactor: Lint

This commit is contained in:
jstoobysmith 2024-05-17 15:28:05 -04:00
parent 7ebd2af7a5
commit c61e2774e1
5 changed files with 39 additions and 17 deletions

View file

@ -46,23 +46,25 @@ def fstCol (Λ : lorentzGroup) : PreFourVelocity := ⟨Λ.1 *ᵥ stdBasis 0, by
rw [← h00]
ring⟩
/-- A Lorentz transformation is `orthochronous` if its `0 0` element is non-negative. -/
def IsOrthochronous (Λ : lorentzGroup) : Prop := 0 ≤ Λ.1 0 0
lemma IsOrthochronous_iff_transpose (Λ : lorentzGroup) :
IsOrthochronous Λ ↔ IsOrthochronous (transpose Λ) := by
simp [IsOrthochronous]
simp [transpose]
simp only [IsOrthochronous, Fin.isValue, transpose, PreservesηLin.liftLor, PreservesηLin.liftGL,
transpose_transpose, transpose_apply]
lemma IsOrthochronous_iff_fstCol_IsFourVelocity (Λ : lorentzGroup) :
IsOrthochronous Λ ↔ IsFourVelocity (fstCol Λ) := by
simp [IsOrthochronous, IsFourVelocity]
rw [stdBasis_mulVec]
/-- The continuous map taking a Lorentz transformation to its `0 0` element. -/
def mapZeroZeroComp : C(lorentzGroup, ) := ⟨fun Λ => Λ.1 0 0, by
refine Continuous.matrix_elem ?_ 0 0
refine Continuous.comp' Units.continuous_val continuous_subtype_val⟩
/-- An auxillary function used in the definition of `orthchroMapReal`. -/
def stepFunction : := fun t =>
if t ≤ -1 then -1 else
if 1 ≤ t then 1 else t
@ -78,6 +80,8 @@ lemma stepFunction_continuous : Continuous stepFunction := by
rw [Set.Ici_def, @frontier_Ici, @Set.mem_singleton_iff] at ha
simp [ha]
/-- The continuous map from `lorentzGroup` to `` wh
taking Orthochronous elements to `1` and non-orthochronous to `-1`. -/
def orthchroMapReal : C(lorentzGroup, ) := ContinuousMap.comp
⟨stepFunction, stepFunction_continuous⟩ mapZeroZeroComp
@ -108,6 +112,7 @@ lemma orthchroMapReal_minus_one_or_one (Λ : lorentzGroup) :
local notation "ℤ₂" => Multiplicative (ZMod 2)
/-- A continuous map from `lorentzGroup` to `ℤ₂` whose kernal are the Orthochronous elements. -/
def orthchroMap : C(lorentzGroup, ℤ₂) :=
ContinuousMap.comp coeFor₂ {
toFun := fun Λ => ⟨orthchroMapReal Λ, orthchroMapReal_minus_one_or_one Λ⟩,
@ -127,7 +132,7 @@ lemma zero_zero_mul (Λ Λ' : lorentzGroup) :
⟪(fstCol (transpose Λ)).1.space, (fstCol Λ').1.space⟫_ := by
rw [@Subgroup.coe_mul, @GeneralLinearGroup.coe_mul, mul_apply, Fin.sum_univ_four]
rw [@PiLp.inner_apply, Fin.sum_univ_three]
simp [transpose, stdBasis_mulVec]
simp [transpose, stdBasis_mulVec, PreservesηLin.liftLor, PreservesηLin.liftGL]
ring
lemma mul_othchron_of_othchron_othchron {Λ Λ' : lorentzGroup} (h : IsOrthochronous Λ)
@ -164,24 +169,25 @@ lemma mul_not_othchron_of_not_othchron_othchron {Λ Λ' : lorentzGroup} (h : ¬
rw [zero_zero_mul]
exact euclid_norm_not_IsFourVelocity_IsFourVelocity h h'
/-- The representation from `lorentzGroup` to `ℤ₂` whose kernal are the Orthochronous elements. -/
def orthchroRep : lorentzGroup →* ℤ₂ where
toFun := orthchroMap
map_one' := by
have h1 : IsOrthochronous 1 := by simp [IsOrthochronous]
rw [orthchroMap_IsOrthochronous h1]
map_mul' Λ Λ' := by
simp
simp only
by_cases h : IsOrthochronous Λ
<;> by_cases h' : IsOrthochronous Λ'
rw [orthchroMap_IsOrthochronous h, orthchroMap_IsOrthochronous h',
orthchroMap_IsOrthochronous (mul_othchron_of_othchron_othchron h h')]
simp
simp only [mul_one]
rw [orthchroMap_IsOrthochronous h, orthchroMap_not_IsOrthochronous h',
orthchroMap_not_IsOrthochronous (mul_not_othchron_of_othchron_not_othchron h h')]
simp
simp only [Nat.reduceAdd, one_mul]
rw [orthchroMap_not_IsOrthochronous h, orthchroMap_IsOrthochronous h',
orthchroMap_not_IsOrthochronous (mul_not_othchron_of_not_othchron_othchron h h')]
simp
simp only [Nat.reduceAdd, mul_one]
rw [orthchroMap_not_IsOrthochronous h, orthchroMap_not_IsOrthochronous h',
orthchroMap_IsOrthochronous (mul_othchron_of_not_othchron_not_othchron h h')]
simp only [Nat.reduceAdd]