Merge branch 'master' into Tensors
This commit is contained in:
commit
c6e17ae7ea
22 changed files with 265 additions and 47 deletions
|
@ -151,7 +151,7 @@ lemma coe_inv : (Λ⁻¹).1 = Λ.1⁻¹:= by
|
|||
refine (inv_eq_left_inv ?h).symm
|
||||
exact mem_iff_dual_mul_self.mp Λ.2
|
||||
|
||||
/-- The transpose of an matrix in the Lorentz group is an element of the Lorentz group. -/
|
||||
/-- The transpose of a matrix in the Lorentz group is an element of the Lorentz group. -/
|
||||
def transpose (Λ : LorentzGroup d) : LorentzGroup d :=
|
||||
⟨Λ.1ᵀ, mem_iff_transpose.mp Λ.2⟩
|
||||
|
||||
|
|
|
@ -22,7 +22,7 @@ variable (d : ℕ)
|
|||
/-- The type of Lorentz Vectors in `d`-space dimensions. -/
|
||||
def LorentzVector : Type := (Fin 1 ⊕ Fin d) → ℝ
|
||||
|
||||
/-- An instance of a additive commutative monoid on `LorentzVector`. -/
|
||||
/-- An instance of an additive commutative monoid on `LorentzVector`. -/
|
||||
instance : AddCommMonoid (LorentzVector d) := Pi.addCommMonoid
|
||||
|
||||
/-- An instance of a module on `LorentzVector`. -/
|
||||
|
|
|
@ -23,7 +23,7 @@ open Matrix
|
|||
# The definition of the Minkowski Matrix
|
||||
|
||||
-/
|
||||
/-- The `d.succ`-dimensional real of the form `diag(1, -1, -1, -1, ...)`. -/
|
||||
/-- The `d.succ`-dimensional real matrix of the form `diag(1, -1, -1, -1, ...)`. -/
|
||||
def minkowskiMatrix {d : ℕ} : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ :=
|
||||
LieAlgebra.Orthogonal.indefiniteDiagonal (Fin 1) (Fin d) ℝ
|
||||
|
||||
|
@ -146,7 +146,7 @@ lemma self_eq_time_minus_norm : ⟪v, v⟫ₘ = v.time ^ 2 - ‖v.space‖ ^ 2 :
|
|||
rw [← real_inner_self_eq_norm_sq, PiLp.inner_apply, as_sum]
|
||||
noncomm_ring
|
||||
|
||||
/-- The Minkowski metric is symmetric. -/
|
||||
/-- The Minkowski metric is symmetric in its arguments.. -/
|
||||
lemma symm : ⟪v, w⟫ₘ = ⟪w, v⟫ₘ := by
|
||||
simp only [as_sum]
|
||||
ac_rfl
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue