Merge branch 'master' into Tensors

This commit is contained in:
jstoobysmith 2024-07-16 09:45:18 -04:00
commit c6e17ae7ea
22 changed files with 265 additions and 47 deletions

View file

@ -151,7 +151,7 @@ lemma coe_inv : (Λ⁻¹).1 = Λ.1⁻¹:= by
refine (inv_eq_left_inv ?h).symm
exact mem_iff_dual_mul_self.mp Λ.2
/-- The transpose of an matrix in the Lorentz group is an element of the Lorentz group. -/
/-- The transpose of a matrix in the Lorentz group is an element of the Lorentz group. -/
def transpose (Λ : LorentzGroup d) : LorentzGroup d :=
⟨Λ.1ᵀ, mem_iff_transpose.mp Λ.2⟩

View file

@ -22,7 +22,7 @@ variable (d : )
/-- The type of Lorentz Vectors in `d`-space dimensions. -/
def LorentzVector : Type := (Fin 1 ⊕ Fin d) →
/-- An instance of a additive commutative monoid on `LorentzVector`. -/
/-- An instance of an additive commutative monoid on `LorentzVector`. -/
instance : AddCommMonoid (LorentzVector d) := Pi.addCommMonoid
/-- An instance of a module on `LorentzVector`. -/

View file

@ -23,7 +23,7 @@ open Matrix
# The definition of the Minkowski Matrix
-/
/-- The `d.succ`-dimensional real of the form `diag(1, -1, -1, -1, ...)`. -/
/-- The `d.succ`-dimensional real matrix of the form `diag(1, -1, -1, -1, ...)`. -/
def minkowskiMatrix {d : } : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) :=
LieAlgebra.Orthogonal.indefiniteDiagonal (Fin 1) (Fin d)
@ -146,7 +146,7 @@ lemma self_eq_time_minus_norm : ⟪v, v⟫ₘ = v.time ^ 2 - ‖v.space‖ ^ 2 :
rw [← real_inner_self_eq_norm_sq, PiLp.inner_apply, as_sum]
noncomm_ring
/-- The Minkowski metric is symmetric. -/
/-- The Minkowski metric is symmetric in its arguments.. -/
lemma symm : ⟪v, w⟫ₘ = ⟪w, v⟫ₘ := by
simp only [as_sum]
ac_rfl