refactor: Lint

This commit is contained in:
jstoobysmith 2024-10-28 07:45:25 +00:00
parent fe9cb6d01c
commit c6f4448bc8

View file

@ -8,7 +8,6 @@ import HepLean.Tensors.Tree.Basic
## Products and contractions ## Products and contractions
-/ -/
open IndexNotation open IndexNotation
@ -40,13 +39,13 @@ def leftContrEquivSuccSucc : Fin (n.succ.succ + n1) ≃ Fin ((n + n1).succ.succ)
def leftContrEquivSucc : Fin (n.succ + n1) ≃ Fin ((n + n1).succ) := def leftContrEquivSucc : Fin (n.succ + n1) ≃ Fin ((n + n1).succ) :=
(Fin.castOrderIso (by omega)).toEquiv (Fin.castOrderIso (by omega)).toEquiv
def leftContrI (n1 : ): Fin ((n + n1).succ.succ) := leftContrEquivSuccSucc <| Fin.castAdd n1 q.i def leftContrI (n1 : ) : Fin ((n + n1).succ.succ) := leftContrEquivSuccSucc <| Fin.castAdd n1 q.i
def leftContrJ (n1 : ) : Fin ((n + n1).succ) := leftContrEquivSucc <| Fin.castAdd n1 q.j def leftContrJ (n1 : ) : Fin ((n + n1).succ) := leftContrEquivSucc <| Fin.castAdd n1 q.j
@[simp] @[simp]
lemma leftContrJ_succAbove_leftContrI : (q.leftContrI n1).succAbove (q.leftContrJ n1) lemma leftContrJ_succAbove_leftContrI : (q.leftContrI n1).succAbove (q.leftContrJ n1)
= leftContrEquivSuccSucc (Fin.castAdd n1 (q.i.succAbove q.j)) := by = leftContrEquivSuccSucc (Fin.castAdd n1 (q.i.succAbove q.j)) := by
rw [leftContrI, leftContrJ] rw [leftContrI, leftContrJ]
rw [Fin.ext_iff] rw [Fin.ext_iff]
simp only [Fin.succAbove, Nat.succ_eq_add_one, leftContrEquivSucc, RelIso.coe_fn_toEquiv, simp only [Fin.succAbove, Nat.succ_eq_add_one, leftContrEquivSucc, RelIso.coe_fn_toEquiv,
@ -81,7 +80,6 @@ lemma succAbove_leftContrJ_leftContrI_natAdd (x : Fin n1) :
<;> simp_all [leftContrEquivSucc] <;> simp_all [leftContrEquivSucc]
<;> omega <;> omega
def leftContr : ContrPair ((Sum.elim c c1 ∘ (@finSumFinEquiv n.succ.succ n1).symm.toFun) ∘ def leftContr : ContrPair ((Sum.elim c c1 ∘ (@finSumFinEquiv n.succ.succ n1).symm.toFun) ∘
leftContrEquivSuccSucc.symm) where leftContrEquivSuccSucc.symm) where
i := q.leftContrI n1 i := q.leftContrI n1
@ -92,8 +90,9 @@ def leftContr : ContrPair ((Sum.elim c c1 ∘ (@finSumFinEquiv n.succ.succ n1).s
simpa only [leftContrI, Nat.succ_eq_add_one, Equiv.symm_apply_apply, simpa only [leftContrI, Nat.succ_eq_add_one, Equiv.symm_apply_apply,
finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl] using q.h finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl] using q.h
lemma leftContr_map_eq : ((Sum.elim c (OverColor.mk c1).hom ∘ finSumFinEquiv.symm.toFun) ∘ ⇑leftContrEquivSuccSucc.symm) ∘ lemma leftContr_map_eq : ((Sum.elim c (OverColor.mk c1).hom ∘ finSumFinEquiv.symm.toFun) ∘
(q.leftContr (c1 := c1)).i.succAbove ∘ (q.leftContr (c1 := c1)).j.succAbove = ⇑leftContrEquivSuccSucc.symm) ∘ (q.leftContr (c1 := c1)).i.succAbove ∘
(q.leftContr (c1 := c1)).j.succAbove =
Sum.elim (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).hom (OverColor.mk c1).hom ∘ Sum.elim (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).hom (OverColor.mk c1).hom ∘
⇑finSumFinEquiv.symm := by ⇑finSumFinEquiv.symm := by
funext x funext x
@ -126,7 +125,7 @@ lemma sum_inl_succAbove_leftContrI_leftContrJ (k : Fin n) : finSumFinEquiv.symm
erw [succAbove_leftContrJ_leftContrI_castAdd] erw [succAbove_leftContrJ_leftContrI_castAdd]
simp simp
lemma sum_inr_succAbove_leftContrI_leftContrJ (k : Fin n1) : finSumFinEquiv.symm lemma sum_inr_succAbove_leftContrI_leftContrJ (k : Fin n1) : finSumFinEquiv.symm
(leftContrEquivSuccSucc.symm (leftContrEquivSuccSucc.symm
((q.leftContr (c1 := c1)).i.succAbove ((q.leftContr (c1 := c1)).i.succAbove
((q.leftContr (c1 := c1)).j.succAbove ((q.leftContr (c1 := c1)).j.succAbove
@ -137,17 +136,20 @@ lemma sum_inr_succAbove_leftContrI_leftContrJ (k : Fin n1) : finSumFinEquiv.sym
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl] Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
erw [succAbove_leftContrJ_leftContrI_natAdd] erw [succAbove_leftContrJ_leftContrI_natAdd]
simp simp
lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i }))
(q' : (i : (𝟭 Type).obj (OverColor.mk c1).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i })): lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) →
(S.F.map (equivToIso finSumFinEquiv).hom).hom CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i }))
(q' : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i })) :
(S.F.map (equivToIso finSumFinEquiv).hom).hom
((S.F.μ (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)) (OverColor.mk c1)).hom ((S.F.μ (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)) (OverColor.mk c1)).hom
((q.contrMap.hom (PiTensorProduct.tprod S.k p)) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q')) ((q.contrMap.hom (PiTensorProduct.tprod S.k p)) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))
= (S.F.map (mkIso (by exact leftContr_map_eq q)).hom).hom = (S.F.map (mkIso (by simpa using leftContr_map_eq q)).hom).hom
(q.leftContr.contrMap.hom (q.leftContr.contrMap.hom
((S.F.map (equivToIso (@leftContrEquivSuccSucc n n1)).hom).hom ((S.F.map (equivToIso (@leftContrEquivSuccSucc n n1)).hom).hom
((S.F.map (equivToIso finSumFinEquiv).hom).hom ((S.F.map (equivToIso finSumFinEquiv).hom).hom
((S.F.μ (OverColor.mk c) (OverColor.mk c1)).hom ((S.F.μ (OverColor.mk c) (OverColor.mk c1)).hom
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))))) := by ((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))))) := by
conv_lhs => rw [contrMap, TensorSpecies.contrMap_tprod] conv_lhs => rw [contrMap, TensorSpecies.contrMap_tprod]
simp only [TensorSpecies.F_def] simp only [TensorSpecies.F_def]
conv_rhs => rw [lift.obj_μ_tprod_tmul] conv_rhs => rw [lift.obj_μ_tprod_tmul]
@ -170,8 +172,8 @@ lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) → C
((PiTensorProduct.tprod S.k) _)) ((PiTensorProduct.tprod S.k) _))
conv_rhs => rw [contrMap, TensorSpecies.contrMap_tprod] conv_rhs => rw [contrMap, TensorSpecies.contrMap_tprod]
simp only [TensorProduct.smul_tmul, TensorProduct.tmul_smul, map_smul] simp only [TensorProduct.smul_tmul, TensorProduct.tmul_smul, map_smul]
have hL (a : Fin n.succ.succ) {b : Fin (n + 1 + 1) ⊕ Fin n1} have hL (a : Fin n.succ.succ) {b : Fin (n + 1 + 1) ⊕ Fin n1}
(h : b = Sum.inl a) : p a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp ))).hom (h : b = Sum.inl a) : p a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp))).hom
((lift.discreteSumEquiv S.FDiscrete b) ((lift.discreteSumEquiv S.FDiscrete b)
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by (HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
subst h subst h
@ -206,12 +208,11 @@ lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) → C
exact Eq.symm ((fun f => (Equiv.apply_eq_iff_eq_symm_apply f).mp) finSumFinEquiv rfl) exact Eq.symm ((fun f => (Equiv.apply_eq_iff_eq_symm_apply f).mp) finSumFinEquiv rfl)
· simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe, · simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
LinearMap.coe_toAddHom, equivToIso_homToEquiv] LinearMap.coe_toAddHom, equivToIso_homToEquiv]
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫ S.FDiscrete.map (Discrete.eqToHom _)).hom _ change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫
S.FDiscrete.map (Discrete.eqToHom _)).hom _
rw [← S.FDiscrete.map_comp] rw [← S.FDiscrete.map_comp]
simp only [eqToHom_trans] simp only [eqToHom_trans]
/- a = q.i.succAbove q.j, d = q.i, b = (finSumFinEquiv.symm (leftContrEquivSuccSucc.symm (q.leftContr.i.succAbove q.leftContr.j)) have h1 {a d : Fin n.succ.succ} {b : Fin (n + 1 + 1) ⊕ Fin n1}
h : c (q.i.succAbove q.j) = S.τ (c q.i) -/
have h1 {a d : Fin n.succ.succ} {b : Fin (n + 1 + 1) ⊕ Fin n1}
(h1' : b = Sum.inl a) (h2' : c a = S.τ (c d)) : (h1' : b = Sum.inl a) (h2' : c a = S.τ (c d)) :
(S.FDiscrete.map (Discrete.eqToHom h2')).hom (p a) = (S.FDiscrete.map (Discrete.eqToHom h2')).hom (p a) =
(S.FDiscrete.map (eqToHom (by subst h1'; simpa using h2'))).hom (S.FDiscrete.map (eqToHom (by subst h1'; simpa using h2'))).hom
@ -227,24 +228,25 @@ lemma contrMap_prod_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c).left) → C
conv_lhs => erw [lift.map_tprod] conv_lhs => erw [lift.map_tprod]
apply congrArg apply congrArg
funext k funext k
simp only [ Functor.id_obj, mk_hom, Function.comp_apply, simp only [Functor.id_obj, mk_hom, Function.comp_apply,
equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, instMonoidalCategoryStruct_tensorObj_hom, Iso.refl_hom, Action.id_hom, Iso.refl_inv, instMonoidalCategoryStruct_tensorObj_hom,
LinearEquiv.ofLinear_apply, Equiv.toFun_as_coe, equivToIso_mkIso_hom, Equiv.refl_symm, LinearEquiv.ofLinear_apply, Equiv.toFun_as_coe, equivToIso_mkIso_hom, Equiv.refl_symm,
Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv] Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv]
have h1 (l : (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).left ⊕ (OverColor.mk c1).left) have h1 (l : (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).left ⊕ (OverColor.mk c1).left)
(l' : Fin n.succ.succ ⊕ Fin n1) (l' : Fin n.succ.succ ⊕ Fin n1)
(h : Sum.elim c c1 l' = Sum.elim (c ∘ q.i.succAbove ∘ q.j.succAbove) c1 l) (h : Sum.elim c c1 l' = Sum.elim (c ∘ q.i.succAbove ∘ q.j.succAbove) c1 l)
(h' : l' = (Sum.map (q.i.succAbove ∘ q.j.succAbove) id l)) (h' : l' = (Sum.map (q.i.succAbove ∘ q.j.succAbove) id l)) :
: (lift.discreteSumEquiv S.FDiscrete l) (lift.discreteSumEquiv S.FDiscrete l)
(HepLean.PiTensorProduct.elimPureTensor (fun k => p (q.i.succAbove (q.j.succAbove k))) q' l) = (HepLean.PiTensorProduct.elimPureTensor
(S.FDiscrete.map (eqToHom (by simp [h] ))).hom (fun k => p (q.i.succAbove (q.j.succAbove k))) q' l) =
(S.FDiscrete.map (eqToHom (by simp [h]))).hom
((lift.discreteSumEquiv S.FDiscrete l') ((lift.discreteSumEquiv S.FDiscrete l')
(HepLean.PiTensorProduct.elimPureTensor p q' l')) := by (HepLean.PiTensorProduct.elimPureTensor p q' l')) := by
subst h' subst h'
match l with match l with
| Sum.inl l => | Sum.inl l =>
simp only [ instMonoidalCategoryStruct_tensorObj_hom, mk_hom, simp only [instMonoidalCategoryStruct_tensorObj_hom, mk_hom,
Sum.elim_inl, Function.comp_apply, Functor.id_obj, Sum.map_inl, eqToHom_refl, Sum.elim_inl, Function.comp_apply, Functor.id_obj, Sum.map_inl, eqToHom_refl,
Discrete.functor_map_id, Action.id_hom, ModuleCat.id_apply] Discrete.functor_map_id, Action.id_hom, ModuleCat.id_apply]
rfl rfl
@ -268,19 +270,18 @@ lemma contrMap_prod :
(S.F.μ ((OverColor.mk c)) ((OverColor.mk c1))) ≫ (S.F.μ ((OverColor.mk c)) ((OverColor.mk c1))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫ S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
S.F.map (OverColor.equivToIso leftContrEquivSuccSucc).hom ≫ q.leftContr.contrMap S.F.map (OverColor.equivToIso leftContrEquivSuccSucc).hom ≫ q.leftContr.contrMap
≫ S.F.map (OverColor.mkIso (q.leftContr_map_eq)).hom := by ≫ S.F.map (OverColor.mkIso (q.leftContr_map_eq)).hom := by
ext1 ext1
exact HepLean.PiTensorProduct.induction_tmul (fun p q' => q.contrMap_prod_tprod p q') exact HepLean.PiTensorProduct.induction_tmul (fun p q' => q.contrMap_prod_tprod p q')
lemma contr_prod lemma contr_prod
(t : TensorTree S c) (t1 : TensorTree S c1) : (t : TensorTree S c) (t1 : TensorTree S c1) :
(prod (contr q.i q.j q.h t) t1).tensor = ((perm (OverColor.mkIso q.leftContr_map_eq).hom (prod (contr q.i q.j q.h t) t1).tensor = ((perm (OverColor.mkIso q.leftContr_map_eq).hom
(contr (q.leftContrI n1) (q.leftContrJ n1) (contr (q.leftContrI n1) (q.leftContrJ n1)
q.leftContr.h ( q.leftContr.h
perm (OverColor.equivToIso ContrPair.leftContrEquivSuccSucc).hom (prod t t1) (perm (OverColor.equivToIso ContrPair.leftContrEquivSuccSucc).hom (prod t t1)))).tensor) := by
))).tensor) := by
simp only [contr_tensor, perm_tensor, prod_tensor] simp only [contr_tensor, perm_tensor, prod_tensor]
change ((q.contrMap ▷ S.F.obj (OverColor.mk c1)) ≫ (S.F.μ _ ((OverColor.mk c1))) ≫ change ((q.contrMap ▷ S.F.obj (OverColor.mk c1)) ≫ (S.F.μ _ ((OverColor.mk c1))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom (t.tensor ⊗ₜ[S.k] t1.tensor) = _ S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom (t.tensor ⊗ₜ[S.k] t1.tensor) = _
rw [contrMap_prod] rw [contrMap_prod]
simp only [Nat.succ_eq_add_one, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V, simp only [Nat.succ_eq_add_one, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V,
@ -297,13 +298,13 @@ lemma contr_prod
-/ -/
def rightContrI (n1 : ): Fin ((n1 + n).succ.succ) := Fin.natAdd n1 q.i def rightContrI (n1 : ) : Fin ((n1 + n).succ.succ) := Fin.natAdd n1 q.i
def rightContrJ (n1 : ) : Fin ((n1 + n).succ) := Fin.natAdd n1 q.j def rightContrJ (n1 : ) : Fin ((n1 + n).succ) := Fin.natAdd n1 q.j
@[simp] @[simp]
lemma rightContrJ_succAbove_rightContrI : (q.rightContrI n1).succAbove (q.rightContrJ n1) lemma rightContrJ_succAbove_rightContrI : (q.rightContrI n1).succAbove (q.rightContrJ n1)
= (Fin.natAdd n1 (q.i.succAbove q.j)) := by = (Fin.natAdd n1 (q.i.succAbove q.j)) := by
rw [rightContrI, rightContrJ] rw [rightContrI, rightContrJ]
rw [Fin.ext_iff] rw [Fin.ext_iff]
simp only [Fin.succAbove, Nat.succ_eq_add_one, Fin.coe_natAdd] simp only [Fin.succAbove, Nat.succ_eq_add_one, Fin.coe_natAdd]
@ -366,38 +367,38 @@ lemma rightContr_map_eq : ((Sum.elim c1 (OverColor.mk c).hom ∘ finSumFinEquiv.
erw [succAbove_rightContrJ_rightContrI_natAdd] erw [succAbove_rightContrJ_rightContrI_natAdd]
simp only [finSumFinEquiv_symm_apply_natAdd, Sum.elim_inr, Function.comp_apply] simp only [finSumFinEquiv_symm_apply_natAdd, Sum.elim_inr, Function.comp_apply]
lemma sum_inl_succAbove_rightContrI_rightContrJ (k : Fin n1) : (@finSumFinEquiv n1 n.succ.succ).symm
lemma sum_inl_succAbove_rightContrI_rightContrJ (k : Fin n1): (@finSumFinEquiv n1 n.succ.succ).symm
((q.rightContr (c1 := c1)).i.succAbove ((q.rightContr (c1 := c1)).i.succAbove
((q.rightContr (c1 := c1)).j.succAbove ((q.rightContr (c1 := c1)).j.succAbove (((@finSumFinEquiv n1 n) (Sum.inl k))))) =
(((@finSumFinEquiv n1 n) (Sum.inl k))))) = Sum.map id (q.i.succAbove ∘ q.j.succAbove)
Sum.map id (q.i.succAbove ∘ q.j.succAbove) (finSumFinEquiv.symm (finSumFinEquiv (Sum.inl k))) := by (finSumFinEquiv.symm (finSumFinEquiv (Sum.inl k))) := by
simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI, simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI,
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl] Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
erw [succAbove_rightContrJ_rightContrI_castAdd] erw [succAbove_rightContrJ_rightContrI_castAdd]
simp simp
lemma sum_inr_succAbove_rightContrI_rightContrJ (k : Fin n): (@finSumFinEquiv n1 n.succ.succ).symm lemma sum_inr_succAbove_rightContrI_rightContrJ (k : Fin n) : (@finSumFinEquiv n1 n.succ.succ).symm
((q.rightContr (c1 := c1)).i.succAbove ((q.rightContr (c1 := c1)).i.succAbove
((q.rightContr (c1 := c1)).j.succAbove ((q.rightContr (c1 := c1)).j.succAbove ((finSumFinEquiv (Sum.inr k))))) =
( Sum.map id (q.i.succAbove ∘ q.j.succAbove)
(finSumFinEquiv (Sum.inr k))))) = (finSumFinEquiv.symm (finSumFinEquiv (Sum.inr k))) := by
Sum.map id (q.i.succAbove ∘ q.j.succAbove) (finSumFinEquiv.symm (finSumFinEquiv (Sum.inr k))):= by
simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI, simp only [leftContr, Nat.succ_eq_add_one, Equiv.toFun_as_coe, leftContrI,
Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl] Equiv.symm_apply_apply, finSumFinEquiv_symm_apply_castAdd, Sum.elim_inl]
erw [succAbove_rightContrJ_rightContrI_natAdd] erw [succAbove_rightContrJ_rightContrI_natAdd]
simp simp
lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i })) CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c1).hom i }))
(q' : (i : (𝟭 Type).obj (OverColor.mk c).left) → CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i })): (q' : (i : (𝟭 Type).obj (OverColor.mk c).left) →
(S.F.map (equivToIso finSumFinEquiv).hom).hom CoeSort.coe (S.FDiscrete.obj { as := (OverColor.mk c).hom i })) :
(S.F.map (equivToIso finSumFinEquiv).hom).hom
((S.F.μ (OverColor.mk c1) (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove))).hom ((S.F.μ (OverColor.mk c1) (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove))).hom
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (q.contrMap.hom (PiTensorProduct.tprod S.k q')))) = ((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (q.contrMap.hom (PiTensorProduct.tprod S.k q')))) =
(S.F.map (mkIso (by exact (rightContr_map_eq q))).hom).hom (S.F.map (mkIso (by simpa using (rightContr_map_eq q))).hom).hom
(q.rightContr.contrMap.hom (q.rightContr.contrMap.hom
(((S.F.map (equivToIso finSumFinEquiv).hom ).hom (((S.F.map (equivToIso finSumFinEquiv).hom).hom
((S.F.μ (OverColor.mk c1) (OverColor.mk c)).hom ((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))))) := by ((S.F.μ (OverColor.mk c1) (OverColor.mk c)).hom
((PiTensorProduct.tprod S.k) p ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) q'))))) := by
conv_lhs => rw [contrMap, TensorSpecies.contrMap_tprod] conv_lhs => rw [contrMap, TensorSpecies.contrMap_tprod]
simp only [TensorSpecies.F_def] simp only [TensorSpecies.F_def]
conv_rhs => rw [lift.obj_μ_tprod_tmul] conv_rhs => rw [lift.obj_μ_tprod_tmul]
@ -428,8 +429,8 @@ lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
finSumFinEquiv_symm_apply_natAdd, Sum.elim_inr] finSumFinEquiv_symm_apply_natAdd, Sum.elim_inr]
· erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply] · erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply]
simp simp
have hL (a : Fin n.succ.succ) {b : Fin n1 ⊕ Fin n.succ.succ} have hL (a : Fin n.succ.succ) {b : Fin n1 ⊕ Fin n.succ.succ}
(h : b = Sum.inr a) : q' a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp ))).hom (h : b = Sum.inr a) : q' a = (S.FDiscrete.map (Discrete.eqToHom (by rw [h]; simp))).hom
((lift.discreteSumEquiv S.FDiscrete b) ((lift.discreteSumEquiv S.FDiscrete b)
(HepLean.PiTensorProduct.elimPureTensor p q' b)) := by (HepLean.PiTensorProduct.elimPureTensor p q' b)) := by
subst h subst h
@ -438,14 +439,15 @@ lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
ModuleCat.id_apply] ModuleCat.id_apply]
rfl rfl
apply hL apply hL
simp [rightContr, rightContrI] simp only [Nat.succ_eq_add_one, rightContr, Nat.add_eq, Equiv.toFun_as_coe, rightContrI,
· erw [ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply, ModuleCat.id_apply] finSumFinEquiv_symm_apply_natAdd]
simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe, · simp only [Discrete.functor_obj_eq_as, Function.comp_apply, AddHom.toFun_eq_coe,
LinearMap.coe_toAddHom, equivToIso_homToEquiv] LinearMap.coe_toAddHom, equivToIso_homToEquiv]
change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫ S.FDiscrete.map (Discrete.eqToHom _)).hom _ change _ = (S.FDiscrete.map (Discrete.eqToHom _) ≫
S.FDiscrete.map (Discrete.eqToHom _)).hom _
rw [← S.FDiscrete.map_comp] rw [← S.FDiscrete.map_comp]
simp simp
have h1 {a d : Fin n.succ.succ} {b : Fin n1 ⊕ Fin (n + 1 + 1) } have h1 {a d : Fin n.succ.succ} {b : Fin n1 ⊕ Fin (n + 1 + 1) }
(h1' : b = Sum.inr a) (h2' : c a = S.τ (c d)) : (h1' : b = Sum.inr a) (h2' : c a = S.τ (c d)) :
(S.FDiscrete.map (Discrete.eqToHom h2')).hom (q' a) = (S.FDiscrete.map (Discrete.eqToHom h2')).hom (q' a) =
(S.FDiscrete.map (eqToHom (by subst h1'; simpa using h2'))).hom (S.FDiscrete.map (eqToHom (by subst h1'; simpa using h2'))).hom
@ -461,21 +463,22 @@ lemma prod_contrMap_tprod (p : (i : (𝟭 Type).obj (OverColor.mk c1).left) →
conv_lhs => erw [lift.map_tprod] conv_lhs => erw [lift.map_tprod]
apply congrArg apply congrArg
funext k funext k
simp only [ Functor.id_obj, mk_hom, Function.comp_apply, simp only [Functor.id_obj, mk_hom, Function.comp_apply,
equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, instMonoidalCategoryStruct_tensorObj_hom, Iso.refl_hom, Action.id_hom, Iso.refl_inv, instMonoidalCategoryStruct_tensorObj_hom,
LinearEquiv.ofLinear_apply, Equiv.toFun_as_coe, equivToIso_mkIso_hom, Equiv.refl_symm, LinearEquiv.ofLinear_apply, Equiv.toFun_as_coe, equivToIso_mkIso_hom, Equiv.refl_symm,
Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv] Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv]
conv_rhs => repeat erw [ModuleCat.id_apply] conv_rhs => repeat erw [ModuleCat.id_apply]
simp [Nat.succ_eq_add_one, AddHom.toFun_eq_coe, LinearMap.coe_toAddHom, simp only [Nat.succ_eq_add_one, Nat.add_eq, AddHom.toFun_eq_coe, LinearMap.coe_toAddHom,
LinearEquiv.coe_coe] LinearEquiv.coe_coe]
have h1 (l : (OverColor.mk c1).left ⊕ (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).left) have h1 (l : (OverColor.mk c1).left ⊕ (OverColor.mk (c ∘ q.i.succAbove ∘ q.j.succAbove)).left)
(l' :Fin n1 ⊕ Fin n.succ.succ ) (l' :Fin n1 ⊕ Fin n.succ.succ)
(h : Sum.elim c1 c l' = Sum.elim c1 (c ∘ q.i.succAbove ∘ q.j.succAbove) l) (h : Sum.elim c1 c l' = Sum.elim c1 (c ∘ q.i.succAbove ∘ q.j.succAbove) l)
(h' : l' = (Sum.map id (q.i.succAbove ∘ q.j.succAbove) l)) (h' : l' = (Sum.map id (q.i.succAbove ∘ q.j.succAbove) l)) :
: (lift.discreteSumEquiv S.FDiscrete l) (lift.discreteSumEquiv S.FDiscrete l)
(HepLean.PiTensorProduct.elimPureTensor p (fun k => q' (q.i.succAbove (q.j.succAbove k))) l) = (HepLean.PiTensorProduct.elimPureTensor p
(S.FDiscrete.map (eqToHom (by simp [h] ))).hom (fun k => q' (q.i.succAbove (q.j.succAbove k))) l) =
(S.FDiscrete.map (eqToHom (by simp [h]))).hom
((lift.discreteSumEquiv S.FDiscrete l') ((lift.discreteSumEquiv S.FDiscrete l')
(HepLean.PiTensorProduct.elimPureTensor p q' l')) := by (HepLean.PiTensorProduct.elimPureTensor p q' l')) := by
subst h' subst h'
@ -504,18 +507,16 @@ lemma prod_contrMap :
S.F.map (OverColor.equivToIso finSumFinEquiv).hom = S.F.map (OverColor.equivToIso finSumFinEquiv).hom =
(S.F.μ ((OverColor.mk c1)) ((OverColor.mk c))) ≫ (S.F.μ ((OverColor.mk c1)) ((OverColor.mk c))) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫ S.F.map (OverColor.equivToIso finSumFinEquiv).hom ≫
q.rightContr.contrMap ≫ S.F.map (OverColor.mkIso (q.rightContr_map_eq)).hom := by q.rightContr.contrMap ≫ S.F.map (OverColor.mkIso (q.rightContr_map_eq)).hom := by
ext1 ext1
exact HepLean.PiTensorProduct.induction_tmul (fun p q' => q.prod_contrMap_tprod p q') exact HepLean.PiTensorProduct.induction_tmul (fun p q' => q.prod_contrMap_tprod p q')
lemma prod_contr (t1 : TensorTree S c1) (t : TensorTree S c) : lemma prod_contr (t1 : TensorTree S c1) (t : TensorTree S c) :
(prod t1 (contr q.i q.j q.h t)).tensor = ((perm (OverColor.mkIso q.rightContr_map_eq).hom (prod t1 (contr q.i q.j q.h t)).tensor = ((perm (OverColor.mkIso q.rightContr_map_eq).hom
(contr (q.rightContrI n1) (q.rightContrJ n1) (contr (q.rightContrI n1) (q.rightContrJ n1)
q.rightContr.h ( q.rightContr.h (prod t1 t))).tensor) := by
(prod t1 t)
))).tensor) := by
simp only [contr_tensor, perm_tensor, prod_tensor] simp only [contr_tensor, perm_tensor, prod_tensor]
change ( (S.F.obj (OverColor.mk c1) ◁ q.contrMap) ≫ (S.F.μ ((OverColor.mk c1)) _) ≫ change ((S.F.obj (OverColor.mk c1) ◁ q.contrMap) ≫ (S.F.μ ((OverColor.mk c1)) _) ≫
S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom (t1.tensor ⊗ₜ[S.k] t.tensor) = _ S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom (t1.tensor ⊗ₜ[S.k] t.tensor) = _
rw [prod_contrMap] rw [prod_contrMap]
simp only [Nat.succ_eq_add_one, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V, simp only [Nat.succ_eq_add_one, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V,
@ -528,24 +529,23 @@ lemma prod_contr (t1 : TensorTree S c1) (t : TensorTree S c) :
end ContrPair end ContrPair
theorem contr_prod {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ} theorem contr_prod {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ}
{j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i)) {j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i))
(t : TensorTree S c) (t1 : TensorTree S c1) : (t : TensorTree S c) (t1 : TensorTree S c1) :
(prod (contr i j hij t) t1).tensor = ((perm (OverColor.mkIso (ContrPair.mk i j hij).leftContr_map_eq).hom (prod (contr i j hij t) t1).tensor =
((perm (OverColor.mkIso (ContrPair.mk i j hij).leftContr_map_eq).hom
(contr ((ContrPair.mk i j hij).leftContrI n1) ((ContrPair.mk i j hij).leftContrJ n1) (contr ((ContrPair.mk i j hij).leftContrI n1) ((ContrPair.mk i j hij).leftContrJ n1)
(ContrPair.mk i j hij).leftContr.h ( (ContrPair.mk i j hij).leftContr.h (
perm (OverColor.equivToIso ContrPair.leftContrEquivSuccSucc).hom (prod t t1) perm (OverColor.equivToIso ContrPair.leftContrEquivSuccSucc).hom (prod t t1)))).tensor) :=
))).tensor) :=
(ContrPair.mk i j hij).contr_prod t t1 (ContrPair.mk i j hij).contr_prod t t1
theorem prod_contr {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ} theorem prod_contr {n n1 : } {c : Fin n.succ.succ → S.C} {c1 : Fin n1 → S.C} {i : Fin n.succ.succ}
{j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i)) {j : Fin n.succ} (hij : c (i.succAbove j) = S.τ (c i))
(t1 : TensorTree S c1) (t : TensorTree S c) : (t1 : TensorTree S c1) (t : TensorTree S c) :
(prod t1 (contr i j hij t)).tensor = ((perm (OverColor.mkIso (ContrPair.mk i j hij).rightContr_map_eq).hom (prod t1 (contr i j hij t)).tensor =
((perm (OverColor.mkIso (ContrPair.mk i j hij).rightContr_map_eq).hom
(contr ((ContrPair.mk i j hij).rightContrI n1) ((ContrPair.mk i j hij).rightContrJ n1) (contr ((ContrPair.mk i j hij).rightContrI n1) ((ContrPair.mk i j hij).rightContrJ n1)
(ContrPair.mk i j hij).rightContr.h ( (ContrPair.mk i j hij).rightContr.h (prod t1 t))).tensor) :=
(prod t1 t)
))).tensor) :=
(ContrPair.mk i j hij).prod_contr t1 t (ContrPair.mk i j hij).prod_contr t1 t
end TensorTree end TensorTree